Articoli correlati a Physics

Physics - Rilegato

 
9780077270674: Physics
Vedi tutte le copie di questo ISBN:
 
 
Physics 2nd edition is an alternate version of the College Physics 3rd edition text by Giambattista/Richardson/Richardson. The key difference is that Physics covers kinematics and forces in the more traditional organization of beginning with Kinematics and proceeding to forces. (College Physics takes an integrated approach to forces and kinematics, introducing forces and interweaving kinematics.)

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

L'autore:
Alan Giambattista hails from northern New Jersey. His teaching career got an early start when his fourth-grade teacher, Anne Berry, handed the class over to him to teach a few lessons about atoms and molecules. At Brigham Young University, he studied piano performance and physics. After graduate work at Cornell University, he joined the physics faculty and has taught introductory physics there for nearly three decades.   Alan still appears in concert regularly as a pianist and harpsichordist. When the long upstate New York winter is finally over, he is eager to get out on Cayuga Lakes waves of blue for Sunday sailboat races. Alan met his wife Marion in a singing group and they have been making beautiful music together ever since. They live in an 1824 parsonage built for an abolitionist minister, which is now surrounded by an organic dairy farm. Besides taking care of the house, cats, and gardens, they love to travel together, especially to Italy. They also love to spoil their adorable grandchildren, Ivy and Leo.
Contenuti:

Chapter 1: Introduction

1.1 Why study physics?

1.2 Talking physics

1.3 The use of mathematics

1.4 Scientific notation and significant figures

1.5 Units

1.6 Dimensional analysis

1.7 Problem-solving techniques

1.8 Approximation

1.9 Graphs

PART ONE: MECHANICS

Chapter 2: Motion Along a Line

2.1 Understanding motion

2.2 Position and displacement

2.3 Velocity: rate of change of position

2.4 Acceleration: rate of change of velocity

2.5 Motion along a line with a constant acceleration

2.6 Visualizing motion along a line with a constant acceleration

2.7 Free fall

Chapter 3: Motion in a Plane

3.1 Graphical addition and subtraction of vectors

3.2 Vector addition and subtraction using components

3.3 Velocity

3.4 Acceleration

3.5 Motion in a plane with constant acceleration

3.6 Velocity is relative; reference frames

Chapter 4: Force and Newton’s Laws of Motion

4.1 Force

4.2 Inertia and equilibrium: Newton’s first law of motion

4.3 Net force, mass, and acceleration: Newton’s second law of motion

4.4 Interaction pairs: Newton’s third law of motion

4.5 Gravitational forces

4.6 Contact forces

4.7 Tension

4.8 Applying Newton’s second law

4.9 Reference frames

4.10 Apparent weight

4.11 Air resistance

4.12 Fundamental forces

Chapter 5: Circular Motion

5.1 Description of uniform circular motion

5.2 Centripetal acceleration

5.3 Banked curves

5.4 Circular orbits

5.5 Nonuniform circular motion

5.6 Angular acceleration

5.7 Artificial gravity

Chapter 6: Conservation of Energy

6.1 The law of conservation of energy

6.2 Work done by a constant force

6.3 Kinetic energy

6.4 Gravitational potential energy (1)

6.5 Gravitational potential energy (2)

6.6 Work done by variable forces: Hooke’s Law

6.7 Elastic potential energy

6.8 Power

Chapter 7: Linear Momentum

7.1 A vector conservation law

7.2 Momentum

7.3 The impulse-momentum theorem

7.4 Conservation of momentum

7.5 Center of mass

7.6 Motion of the center of mass

7.7 Collisions in one dimension

7.8 Collisions in two dimensions

Chapter 8: Torque and Angular Momentum

8.1 Rotational kinetic energy and rotational inertia

8.2 Torque

8.3 Work done by a torque

8.4 Equilibrium revisited

8.5 Equilibrium in the human body

8.6 Rotational form of Newton’s second law

8.7 The dynamics of rolling objects

8.8 Angular momentum

8.9 The vector nature of angular momentum

Chapter 9: Fluids

9.1 States of matter

9.2 Pressure

9.3 Pascal's principle

9.4 The effect of gravity on fluid pressure

9.5 Measuring pressure

9.6 Archimedes' principle

9.7 Fluid flow

9.8 Bernoulli's equation

9.9 Viscosity

9.10 Viscous drag

9.11 Surface tension

Chapter 10: Elasticity and Oscillations

10.1 Elastic deformations of solids

10.2 Hooke's law for tensile and compressive forces

10.3 Beyond Hooke's law

10.4 Shear and volume deformations

10.5 Simple harmonic motion

10.6 The period and frequency for SHM

10.7 Graphical analysis of SHM

10.8 The pendulum

10.9 Damped oscillations

10.10 Forced oscillations and resonance

Chapter 11: Waves

11.1 Waves and energy transport

11.2 Transverse and longitudinal waves

11.3 Speed of transverse waves on a string

11.4 Periodic waves

11.5 Mathematical description of a wave

11.6 Graphing waves

11.7 Principle of superposition

11.8 Reflection and refraction

11.9 Interference and diffraction

11.10 Standing waves

Chapter 12: Sound

12.1 Sound waves

12.2 The speed of sound waves

12.3 Amplitude and intensity of sound waves

12.4 Standing sound waves

12.5 The human ear

12.6 Timbre

12.7 Beats

12.8 The Doppler effect

12.9 Shock waves

12.10 Echolocation and medical imaging

PART TWO: THERMAL PHYSICS

Chapter 13: Temperature and the Ideal Gas

13.1 Temperature

13.2 Temperature scales

13.3 Thermal expansion of solids and liquids

13.4 Molecular picture of a gas

13.5 Absolute temperature and the ideal gas law

13.6 Kinetic theory of the ideal gas

13.7 Temperature and reaction rates

13.8 Collisions between gas molecules

Chapter 14: Heat

14.1 Internal energy

14.2 Heat

14.3 Heat capacity and specific heat

14.4 Specific heat of ideal gases

14.5 Phase transitions

14.6 Conduction

14.7 Convection

14.8 Radiation

Chapter 15: Thermodynamics

15.1 The first law of thermodynamics

15.2 Thermodynamic processes

15.3 Thermodynamic processes for an ideal gas

15.4 Reversible and irreversible processes

15.5 Heat engines

15.6 Refrigerators and heat pumps

15.7 Reversible engines and heat pumps

15.8 Details of the Carnot cycle

15.9 Entropy

15.10 Statistical interpretation of entropy

15.11 The third law of thermodynamics

PART THREE: ELECTROMAGNETISM

Chapter 16: Electric Forces and Fields

16.1 Electric charge

16.2 Conductors and insulators

16.3 Coulomb’s law

16.4 The electric field

16.5 Motion of a point charge in a uniform electric field

16.6 Conductors in electrostatic equilibrium

16.7 Gauss's law for electric fields

Chapter 17: Electric Potential

17.1 Electric potential energy

17.2 Electric potential

17.3 The relationship between electric field and potential

17.4 Conservation of energy for moving charges

17.5 Capacitors

17.6 Dielectrics

17.7 Energy stored in a capacitor

Chapter 18: Electric Current and Circuits

18.1 Electric current

18.2 Emf and circuits

18.3 Microscopic view of current in a metal

18.4 Resistance and resistivity

18.5 Kirchoff’s rules

18.6 Series and parallel circuits

18.7 Circuit analysis using Kirchoff’s rules

18.8 Power and energy in circuits

18.9 Measuring currents and voltages

18.10 RC circuits

18.11 Electrical safety

Chapter 19: Magnetic Forces and Fields

19.1 Magnetic fields

19.2 Magnetic force on a point charge

19.3 Charged particle moving perpendicular to a uniform magnetic field

19.4 Motion of a charged particle in a uniform magnetic field: general

19.5 A charged particle in crossed E and B fields

19.6 Magnetic force on a current-carrying wire

19.7 Torque on a current loop

19.8 Magnetic field due to an electric current

19.9 Ampère’s law

19.10 Magnetic materials

Chapter 20: Electromagnetic Induction

20.1 Motional Emf

20.2 Electric generators

20.3 Faraday's law

20.4 Lenz's law

20.5 Back Emf in a motor

20.6 Transformers

20.7 Eddy currents

20.8 Induced electric fields

20.9 Mutual and self-inductance

20.10 LR circuits

Chapter 21: Alternating Current

21.1 Sinusoidal currents and voltages; resistors in AC circuits

21.2 Electricity in the home

21.3 Capacitors in AC circuits

21.4 Inductors in AC circuits

21.5 RLC series circuit

21.6 Resonance in an RLC circuit

21.7 Converting AC to DC; filters

PART FOUR: ELECTROMAGNETIC WAVES AND OPTICS

Chapter 22: Electromagnetic Waves

22.1 Accelerating charges produce electromagnetic waves

22.2 Maxwell’s equations

22.3 Antennas

22.4 The electromagnetic spectrum

22.5 Speed of EM waves in vacuum and in matter

22.6 Characteristics of electromagnetic waves in vacuum

22.7 Energy transport by EM waves

22.8 Polarization

22.9 The Doppler effect for EM waves

Chapter 23: Reflection and Refraction of Light

23.1 Wavefronts, rays, and Huygens’ principle

23.2 The reflection of light

23.3 The refraction of light: Snell’s law

23.4 Total internal reflection

23.5 Brewster’s angle

23.6 The formation of images through reflection or refraction

23.7 Plane mirrors

23.8 Spherical mirrors

23.9 Thin lenses

Chapter 24: Optical Instruments

24.1 Lenses in combination

24.2 Cameras

24.3 The eye

24.4 The simple magnifier

24.5 Compound microscopes

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreMcGraw-Hill Education
  • Data di pubblicazione2009
  • ISBN 10 0077270673
  • ISBN 13 9780077270674
  • RilegaturaCopertina rigida
  • Numero edizione2
  • Valutazione libreria

Altre edizioni note dello stesso titolo

9780077339685: Physics

Edizione in evidenza

ISBN 10:  0077339681 ISBN 13:  9780077339685
Casa editrice: McGraw-Hill Education, 2009
Rilegato

  • 9780077270681: Physics: 2

    McGraw..., 2009
    Brossura

  • 9780070172449: Physics

    McGraw..., 2009
    Brossura

I migliori risultati di ricerca su AbeBooks

Foto dell'editore

Giambattista,Alan; Richardson,Betty; Richardson,Robert
ISBN 10: 0077270673 ISBN 13: 9780077270674
Nuovo Rilegato Quantità: 5
Da:
Solr Books
(Skokie, IL, U.S.A.)
Valutazione libreria

Descrizione libro Condizione: New. Codice articolo 5D40000080XA_ns

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 16,33
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,75
In U.S.A.
Destinazione, tempi e costi