Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow ‘with’ and ‘without’ transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Prof. KC Santosh is the Chair of the Department of Computer Science at the University of South Dakota (USD). Before joining USD, Prof. Santoshworked as a research fellow at the U.S. National Library of Medicine (NLM), National Institutes of Health (NIH). He was a postdoctoral research scientist at the LORIA research centre (with industrial partner, ITESOFT (France)). He has demonstrated expertise in artificial intelligence, machine learning, pattern recognition, computer vision, image processing and data mining with applications, such as medical imaging informatics, document imaging, biometrics, forensics, and speech analysis. His research projects are funded by
multiple agencies, such as SDCRGP, Department of Education, National Science Foundation, and Asian Office of Aerospace Research and Development. He is the proud recipient of the Cutler Award for Teaching and Research Excellence (USD, 2021), the President’s Research Excellence Award (USD, 2019), and the Ignite Award from the U.S. Department
Nibaran Das received his B.Tech degree in Computer Science and Technology from Kalyani Govt. Engineering College under KalyaniUniversity, in 2003. He received his M.C.S.E. degree from Jadavpur University, in 2005. He received his Ph.D. (Engg.) degree thereafter from Jadavpur University, in 2012. He joined J.U. as a lecturer in 2006. His areas of current research interest are OCR
of handwritten text, optimization techniques, image processing, and deep learning. He has been an editor of Bengali monthly magazine Computer Jagat since 2005.
Swarnendu Ghosh is an Assistant Professor at Adamas University in the department of Computer Science and Engineering. He received his B.Tech degree in Computer Science and Engineering from West Bengal University of Technology, in 2012. He received his Masters in Computer Science and Engineering from Jadavpur University, in 2014. He has been a doctoral fellow under the Erasmus Mundus Mobility with Asia at University of Evora, Portugal. Currently he is continuing his Ph.D. on Computer Science and Engineering at Jadavpur University. His area of interest is deep learning, graph based learning, and knowledge representation.
Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow ‘with’ and ‘without’ transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,04 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 11,49 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 180 pages. 9.25x7.50x0.94 inches. In Stock. Codice articolo __0128235047
Quantità: 2 disponibili
Da: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Questo è un articolo print on demand. Codice articolo aef136df9bb7dd2493e4b5db6439f7aa
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 180. Codice articolo 380615625
Quantità: 3 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 222. Codice articolo B9780128235041
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 180. Codice articolo 26383255574
Quantità: 3 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. 180. Codice articolo 18383255580
Quantità: 3 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 41941232-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780128235041_new
Quantità: Più di 20 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9780128235041
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 41941232-n
Quantità: Più di 20 disponibili