A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning.
The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data.
After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem.
The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Jonas Peters is Associate Professor of Statistics at the University of Copenhagen.
Dominik Janzing is a Senior Research Scientist at the Max Planck Institute for Intelligent Systems in Tübingen, Germany.
Bernhard Schölkopf is Director at the Max Planck Institute for Intelligent Systems in Tübingen, Germany. He is coauthor of Learning with Kernels (2002) and is a coeditor of Advances in Kernel Methods: Support Vector Learning (1998), Advances in Large-Margin Classifiers (2000), and Kernel Methods in Computational Biology (2004), all published by the MIT Press.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 16,98 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 7,65 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26375629929
Quantità: 3 disponibili
Da: Speedyhen, London, Regno Unito
Condizione: NEW. Codice articolo NW9780262037310
Quantità: 2 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-3448
Quantità: 1 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GO-9780262037310
Quantità: 2 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18375629923
Quantità: 3 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 370415542
Quantità: 3 disponibili
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condizione: New. 2018. Hardcover. . . . . . Codice articolo V9780262037310
Quantità: 2 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 29292471
Quantità: 3 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 29292471-n
Quantità: 3 disponibili
Da: Rarewaves.com UK, London, Regno Unito
Hardback. Condizione: New. Codice articolo LU-9780262037310
Quantità: Più di 20 disponibili