Principles of Big Graph: In-depth Insight, Volume 128 in the Advances in Computer series, highlights new advances in the field with this new volume presenting interesting chapters on a variety of topics, including CESDAM: Centered subgraph data matrix for large graph representation, Bivariate, cluster and suitability analysis of NoSQL Solutions for big graph applications, An empirical investigation on Big Graph using deep learning, Analyzing correlation between quality and accuracy of graph clustering, geneBF: Filtering protein-coded gene graph data using bloom filter, Processing large graphs with an alternative representation, MapReduce based convolutional graph neural networks: A comprehensive review.
Fast exact triangle counting in large graphs using SIMD acceleration, A comprehensive investigation on attack graphs, Qubit representation of a binary tree and its operations in quantum computation, Modified ML-KNN: Role of similarity measures and nearest neighbor configuration in multi label text classification on big social network graph data, Big graph based online learning through social networks, Community detection in large-scale real-world networks, Power rank: An interactive web page ranking algorithm, GA based energy efficient modelling of a wireless sensor network, The major challenges of big graph and their solutions: A review, and An investigation on socio-cyber crime graph.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Dr. Ripon Patgiri is an Assistant Professor at the Department of Computer Science & Engineering, National Institute of Technology Silchar, since 2013. His research interests include bloom filters, storage systems, security, and cryptography computing. He has published numerous papers in reputed journals, conferences, and books. Also, he has been awarded with several international patents. He is a senior member of IEEE. He was the General Chair of ICACNI 2018 and BigDML 2019. He is the Organizing Chair of FRSM 2020 and ADCOM 2020. Also, he is the Program Chair of CoMSO 2020, CoMSO 2021, and CoMSO 2022. He is also an editor of several multi-authored books. Moreover, he has received two research project fundings from SERB and DST, India.
Ganesh Chandra Deka is currently Deputy Director (Training) at Directorate General of Training, Ministry of Skill Development and Entrepreneurship, Government of India, New Delhi-110001, India. His research interests include e-Governance, Big Data Analytics, NoSQL Databases and Vocational Education and Training.
He has 2 books on Cloud Computing published by LAP Lambert, Germany. He is the Co-author for 4 text books on Fundamentals of Computer Science (3 books published by Moni Manik Prakashan, Guwahati, Assam, India and 1 IGI Global, USA). As of now he has edited 14 books (6 IGI Global, USA, 5 CRC Press, USA, 2 Elsevier & 1 Springer) on Big data, NoSQL and Cloud Computing and authored 10 Book Chapters.
He has published around 47 research papers in various IEEE conferences. He has organized 08 IEEE International Conferences as Technical Chair in India. He is the Member of the editorial board and reviewer for various Journals and International conferences. Member of IEEE, the Institution of Electronics and Telecommunication Engineers, India and Associate Member, the Institution of Engineers, India
Assistant Professor Anupam Biswas works in Computer Science and Engineering at the National Institute of Technology Silchar, Silchar, Assam, India.
Principles of Big Graph: In-depth Insight, Volume 128 in the Advances in Computer series, highlights new advances in the field with this new volume presenting interesting chapters on a variety of topics, including CESDAM: Centered subgraph data matrix for large graph representation, Bivariate, cluster and suitability analysis of NoSQL Solutions for big graph applications, An empirical investigation on Big Graph using deep learning, Analyzing correlation between quality and accuracy of graph clustering, geneBF: Filtering protein-coded gene graph data using bloom filter, Processing large graphs with an alternative representation, MapReduce based convolutional graph neural networks: A comprehensive review.
Fast exact triangle counting in large graphs using SIMD acceleration, A comprehensive investigation on attack graphs, Qubit representation of a binary tree and its operations in quantum computation, Modified ML-KNN: Role of similarity measures and nearest neighbor configuration in multi label text classification on big social network graph data, Big graph based online learning through social networks, Community detection in large-scale real-world networks, Power rank: An interactive web page ranking algorithm, GA based energy efficient modelling of a wireless sensor network, The major challenges of big graph and their solutions: A review, and An investigation on socio-cyber crime graph.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,42 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 11,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Principles of Big Graph: In-depth Insight, Volume 128 in the Advances in Computer series, highlights new advances in the field with this new volume presenting interesting chapters on a variety of topics, including CESDAM: Centered subgraph data matrix for large graph representation, Bivariate, cluster and suitability analysis of NoSQL Solutions for big graph applications, An empirical investigation on Big Graph using deep learning, Analyzing correlation between quality and accuracy of graph clustering, geneBF: Filtering protein-coded gene graph data using bloom filter, Processing large graphs with an alternative representation, MapReduce based convolutional graph neural networks: A comprehensive review. Fast exact triangle counting in large graphs using SIMD acceleration, A comprehensive investigation on attack graphs, Qubit representation of a binary tree and its operations in quantum computation, Modified ML-KNN: Role of similarity measures and nearest neighbor configuration in multi label text classification on big social network graph data, Big graph based online learning through social networks, Community detection in large-scale real-world networks, Power rank: An interactive web page ranking algorithm, GA based energy efficient modelling of a wireless sensor network, The major challenges of big graph and their solutions: A review, and An investigation on socio-cyber crime graph. Englisch. Codice articolo 9780323898102
Quantità: 2 disponibili
Da: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Questo è un articolo print on demand. Codice articolo 243c74ea7b5330c920ea32e2a818b396
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Principles of Big Graph: In-depth Insight, Volume 128 in the Advances in Computer series, highlights new advances in the field with this new volume presenting interesting chapters on a variety of topics, including CESDAM: Centered subgraph data matrix for large graph representation, Bivariate, cluster and suitability analysis of NoSQL Solutions for big graph applications, An empirical investigation on Big Graph using deep learning, Analyzing correlation between quality and accuracy of graph clustering, geneBF: Filtering protein-coded gene graph data using bloom filter, Processing large graphs with an alternative representation, MapReduce based convolutional graph neural networks: A comprehensive review. Fast exact triangle counting in large graphs using SIMD acceleration, A comprehensive investigation on attack graphs, Qubit representation of a binary tree and its operations in quantum computation, Modified ML-KNN: Role of similarity measures and nearest neighbor configuration in multi label text classification on big social network graph data, Big graph based online learning through social networks, Community detection in large-scale real-world networks, Power rank: An interactive web page ranking algorithm, GA based energy efficient modelling of a wireless sensor network, The major challenges of big graph and their solutions: A review, and An investigation on socio-cyber crime graph. Codice articolo 9780323898102
Quantità: 2 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18395269996
Quantità: 3 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 310 pages. 9.00x6.00x1.18 inches. In Stock. Codice articolo __0323898106
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 44876255-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780323898102_new
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 44876255-n
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Principles of Big Graph: In-depth Insight, Volume 128 in the Advances in Computer series, highlights new advances in the field with this new volume presenting interesting chapters on a variety of topics, including CESDAM: Centered subgraph . Codice articolo 736724156
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 44876255
Quantità: Più di 20 disponibili