Stochastic Modeling: A Thorough Guide to Evaluate, Pre-Process, Model and Compare Time Series with MATLAB Software allows for new avenues in time series analysis and predictive modeling which summarize more than ten years of experience in the application of stochastic models in environmental problems. The book introduces a variety of different topics in time series in the modeling and prediction of complex environmental systems. Most importantly, all codes are user-friendly and readers will be able to use them for their cases. Users who may not be familiar with MATLAB software can also refer to the appendix.
This book also guides the reader step-by-step to learn developed codes for time series modeling, provides required toolboxes, explains concepts, and applies different tools for different types of environmental time series problems.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Dr. Hossein Bonakdari is a distinguished professor in the Department of Civil Engineering at the University of Ottawa, specializing in mathematical modeling and artificial intelligence (AI). A leading expert in AI-driven data analysis, he has pioneered advanced algorithms for real-time forecasting and big data interpretation, significantly improving the understanding and management of environmental systems.
Dr. Bonakdari has authored four books, published over 320 peer-reviewed journal articles, contributed to more than 20 book chapters, and delivered over 100 presentations at national and international conferences. As a respected editorial board member of several leading journals, he continues to shape research in his field. His groundbreaking contributions have earned him global recognition, ranking him among the top 2% of the world's scientists from 2019 to 2024.
In recent years, a paradigm shift in automated assistance with real-time monitoring and the adjusting of appropriate forecasting models using data-driven techniques have been witnessed in several environmental fields. This shift in data analysis resulted in the generation of a significant amount of time series datasets massively produced from real-time monitoring of actual cases as well as from the outcomes of simulations of new optical, radar, sonar, and remote sensing measurement technologies. Typical environmental studies, decisions and strategies tied to time series data analysis involve understanding the nature of and modeling the time series, predicting its future values, and more importantly, understanding how it impacts and is impacted by other parameters. In many contexts, new theories and methods are needed to handle all these features for modeling and analysis. One of the commonly used smart data analysis methods is called stochastic methods which has been employed predominantly as a predictive model to resolve time-series data as efficient tools to extract patterns from complex data.
Stochastic Modeling: A Thorough Guide to Evaluate, Pre-Process, Model and Compare Time Series with MATLAB Software allows for new avenues in time series analysis and predictive modeling which summarize more than ten years’ experience in application of stochastic models in environmental problems. This book introduces a variety of different topics in time series in modeling and prediction of complex environmental systems. Most importantly, all codes are user friendly, and readers will be able to use them for their cases. Those users who may not be familiar with MATLAB software can also refer to the appendix. This book also guides the reader step by step to learn developed codes for time series modeling, provide required toolboxes, understand the concepts, and apply different tools for any type of environmental time series problems.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,05 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 21,75 per la spedizione in Italia
Destinazione, tempi e costiDa: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Questo è un articolo print on demand. Codice articolo KZMS8AXZLU
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 389487122
Quantità: 3 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 300 pages. 9.25x7.50x0.84 inches. In Stock. This item is printed on demand. Codice articolo __0323917488
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. 1st edition NO-PA16APR2015-KAP. Codice articolo 26390112717
Quantità: 3 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 222. Codice articolo B9780323917483
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 44122342-n
Quantità: Più di 20 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18390112711
Quantità: 3 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 44122342-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780323917483_new
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 44122342
Quantità: Più di 20 disponibili