Computational approaches to music composition and style imitation have engaged musicians, music scholars, and computer scientists since the early days of computing. Music generation research has generally employed one of two strategies: knowledge-based methods that model style through explicitly formalized rules, and data mining methods that apply machine learning to induce statistical models of musical style. The five chapters in this book illustrate the range of tasks and design choices in current music generation research applying machine learning techniques and highlighting recurring research issues such as training data, music representation, candidate generation, and evaluation. The contributions focus on different aspects of modeling and generating music, including melody, chord sequences, ornamentation, and dynamics. Models are induced from audio data or symbolic data. This book was originally published as a special issue of the Journal of Mathematics and Music.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
José M. Iñesta is a Professor in the Department of Software and Computing Systems at the Universidad de Alicante, Spain.
Darrell Conklin is a Professor in the Department of Computer Science and Artificial Intelligence at the University of the Basque Country.
Rafael Ramírez-Melendez is Associate Professor in the Music Technology Group in the Department of Information and Communication Technologies at the Universidad Pompeu Fabra, Barcelona, Spain.
Thomas M. Fiore is Associate Professor of Mathematics at the University of Michigan-Dearborn, MI, USA.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 122. Codice articolo 26381137563
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 122. Codice articolo 381685060
Quantità: 3 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 38730506
Quantità: 10 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 122. Codice articolo 18381137553
Quantità: 4 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 201. Codice articolo B9780367892852
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 38730506-n
Quantità: 10 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 122 pages. 9.68x6.85x0.28 inches. In Stock. Codice articolo zk0367892855
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Codice articolo 594606914
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Neuware - This book illustrates the range of tasks and design choices in current music generation research, applying machine learning techniques and highlighting recurring research issues such as training data, music representation, candidate generation, and evaluation. This book was first published as a special issue of the Journal of Mathematics and. Codice articolo 9780367892852
Quantità: 2 disponibili