Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation pro- gation. Similarly, new models based on kernels have had significant impact on both algorithms and applications. This new textbook reacts these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first year PhD students, as wellas researchers and practitioners, and assumes no previous knowledge of pattern recognition or - chine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Chris Bishop is a Microsoft Distinguished Scientist and the Laboratory Director at Microsoft Research Cambridge. He is also Professor of Computer Science at the University of Edinburgh, and a Fellow of Darwin College, Cambridge. In 2004, he was elected Fellow of the Royal Academy of Engineering, and in 2007 he was elected Fellow of the Royal Society of Edinburgh.
The dramatic growth in practical applications for machine learning over the last ten years has been accompanied by many important developments in the underlying algorithms and techniques. For example, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic techniques. The practical applicability of Bayesian methods has been greatly enhanced by the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation, while new models based on kernels have had a significant impact on both algorithms and applications.
This completely new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher. The book is supported by a great deal of additional material, and the reader is encouraged to visit the book web site for the latest information.
Christopher M. Bishop is Deputy Director of Microsoft Research Cambridge, and holds a Chair inComputer Science at the University of Edinburgh. He is a Fellow of Darwin College Cambridge, a Fellow of the Royal Academy of Engineering, and a Fellow of the Royal Society of Edinburgh. His previous textbook "Neural Networks for Pattern Recognition" has been widely adopted.
Coming soon:
*For students, worked solutions to a subset of exercises available on a public web site (for exercises marked "www" in the text)
*For instructors, worked solutions to remaining exercises from the Springer web site
*Lecture slides to accompany each chapter
*Data sets available for download
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 21,22 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 8,14 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Better World Books, Mishawaka, IN, U.S.A.
Condizione: Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. Codice articolo 4761332-20
Quantità: 1 disponibili
Da: Studibuch, Stuttgart, Germania
hardcover. Condizione: Befriedigend. 798 Seiten; 9780387310732.4 Gewicht in Gramm: 2. Codice articolo 870107
Quantità: 1 disponibili
Da: medimops, Berlin, Germania
Condizione: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. Codice articolo M00387310738-G
Quantità: 1 disponibili
Da: Anybook.com, Lincoln, Regno Unito
Condizione: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1850grams, ISBN:9780387310732. Codice articolo 9880403
Quantità: 1 disponibili
Da: Speedyhen, London, Regno Unito
Condizione: NEW. Codice articolo NW9780387310732
Quantità: 2 disponibili
Da: Studibuch, Stuttgart, Germania
hardcover. Condizione: Gut. Seiten; 9780387310732.3 Gewicht in Gramm: 2. Codice articolo 736500
Quantità: 1 disponibili
Da: thebookforest.com, San Rafael, CA, U.S.A.
Condizione: New. Well packaged and promptly shipped from California. Partnered with Friends of the Library since 2010. Codice articolo 1LAUHV002QIM
Quantità: 1 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GB-9780387310732
Quantità: 2 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GB-9780387310732
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. First text on pattern recognition to present the Bayesian viewpoint, one that has become increasing popular in the last five years. Presents approximate inference algorithms that permit fast approximate answers in situations where exact answers ar. Codice articolo 194599092
Quantità: Più di 20 disponibili