"Introduction to Applied Bayesian Statistics and Estimation for Social Scientists" covers the complete process of Bayesian statistical analysis in great detail from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research - including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models - and it thoroughly develops each real-data example in painstaking detail.
The first part of the book provides a detailed introduction to mathematical statistics and the Bayesian approach to statistics, as well as a thorough explanation of the rationale for using simulation methods to construct summaries of posterior distributions. Markov chain Monte Carlo (MCMC) methods - including the Gibbs sampler and the Metropolis-Hastings algorithm - are then introduced as general methods for simulating samples from distributions. Extensive discussion of programming MCMC algorithms, monitoring their performance, and improving them is provided before turning to the larger examples involving real social science models and data.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Introduction to Applied Bayesian Statistics and Estimation for Social Scientists covers the complete process of Bayesian statistical analysis in great detail from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research, including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models, and it thoroughly develops each real-data example in painstaking detail.
The first part of the book provides a detailed introduction to mathematical statistics and the Bayesian approach to statistics, as well as a thorough explanation of the rationale for using simulation methods to construct summaries of posterior distributions. Markov chain Monte Carlo (MCMC) methods—including the Gibbs sampler and the Metropolis-Hastings algorithm—are then introduced as general methods for simulating samples from distributions. Extensive discussion of programming MCMC algorithms, monitoring their performance, and improving them is provided before turning to the larger examples involving real social science models and data.
Scott M. Lynch is an associate professor in the Department of Sociology and Office of Population Research at Princeton University. His substantive research interests are in changes in racial and socioeconomic inequalities in health and mortality across age and time. His methodological interests are in the use of Bayesian stastistics in sociology and demography generally and in multistate life table methodology specifically.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 10,18 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 10,42 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: -OnTimeBooks-, Phoenix, AZ, U.S.A.
Condizione: very_good. Gently read. May have name of previous ownership, or ex-library edition. Binding tight; spine straight and smooth, with no creasing; covers clean and crisp. Minimal signs of handling or shelving. 100% GUARANTEE! Shipped with delivery confirmation, if youâre not satisfied with purchase please return item for full refund. Ships USPS Media Mail. Codice articolo OTV.038771264X.VG
Quantità: 1 disponibili
Da: SecondSale, Montgomery, IL, U.S.A.
Condizione: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00078043925
Quantità: 1 disponibili
Da: bmyguest books, Toronto, ON, Canada
Hardcover. Condizione: Good. 357 Pages With The Index. Textbook Binding. Creased Pages, Used Book,books are NOT signed. We will state signed at the description section. we confirm they are signed via email or stated in the description box. - Specializing in academic, collectiblle and historically significant, providing the utmost quality and customer service satisfaction. For any questions feel free to email us. Codice articolo X14785x
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780387712642_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -'Introduction to Applied Bayesian Statistics and Estimation for Social Scientists' covers the complete process of Bayesian statistical analysis in great detail from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research - including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models - and it thoroughly develops each real-data example in painstaking detail.The first part of the book provides a detailed introduction to mathematical statistics and the Bayesian approach to statistics, as well as a thorough explanation of the rationale for using simulation methods to construct summaries of posterior distributions. Markov chain Monte Carlo (MCMC) methods - including the Gibbs sampler and the Metropolis-Hastings algorithm - are then introduced as general methods for simulating samples from distributions. Extensive discussion of programming MCMC algorithms, monitoring their performance, and improving them is provided before turning to the larger examples involving real social science models and data. 359 pp. Englisch. Codice articolo 9780387712642
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - 'Introduction to Applied Bayesian Statistics and Estimation for Social Scientists' covers the complete process of Bayesian statistical analysis in great detail from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research - including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models - and it thoroughly develops each real-data example in painstaking detail.The first part of the book provides a detailed introduction to mathematical statistics and the Bayesian approach to statistics, as well as a thorough explanation of the rationale for using simulation methods to construct summaries of posterior distributions. Markov chain Monte Carlo (MCMC) methods - including the Gibbs sampler and the Metropolis-Hastings algorithm - are then introduced as general methods for simulating samples from distributions. Extensive discussion of programming MCMC algorithms, monitoring their performance, and improving them is provided before turning to the larger examples involving real social science models and data. Codice articolo 9780387712642
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. First book written at an introductory level for social scientists interested in learning about MCMCThis book outlines Bayesian statistical analysis in great detail, from the development of a model through the process of making statistical inference. . Codice articolo 5910590
Quantità: Più di 20 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2215580172603
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 388. Codice articolo 26286075
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 388 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Codice articolo 7594660
Quantità: 4 disponibili