This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc. , and non-stationary diffusion processes are typical examples of non-ergodic models for which the usual asymptotics and the efficiency criteria of the Fisher-Rao-Wald type are not directly applicable. The new model necessitates a thorough review of both technical and qualitative aspects of the asymptotic theory. The general model studied includes both ergodic and non-ergodic families even though we emphasise applications of the latter type. The plan to write the monograph originally evolved through a series of lectures given by the first author in a graduate seminar course at Cornell University during the fall of 1978, and by the second author at the University of Munich during the fall of 1979. Further work during 1979-1981 on the topic has resolved many of the outstanding conceptual and technical difficulties encountered previously. While there are still some gaps remaining, it appears that the mainstream development in the area has now taken a more definite shape.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
0. An Over-view.- 1. Introduction.- 2. The Classical Fisher-Rao Model for Asymptotic Inference.- 3. Generalisation of the Fisher-Rao Model to Non-ergodic Type Processes.- 4. Mixture Experiments and Conditional Inference.- 5. Non-local Results.- 1. A General Model and Its Local Approximation.- 1. Introduction.- 2. LAMN Families.- 3. Consequences of the LAMN Condition.- 4. Sufficient Conditions for the LAMN Property.- 5. Asymptotic Sufficiency.- 6. An Example (Galton-Watson Branching Process).- 7. Bibliographical Notes.- 2. Efficiency of Estimation.- 1. Introduction.- 2. Asymptotic Structure of Limit Distributions of Sequences of Estimators.- 3. An Upper Bound for the Concentration.- 4. The Existence and Optimality of the Maximum Likelihood Estimators.- 5. Optimality of Bayes Estimators.- 6. Bibliographical Notes.- 3. Optimal Asymptotic Tests.- 1. Introduction.- 2. The Optimality Criteria: Definitions.- 3. An Efficient Test of Simple Hypotheses: Contiguous Alternatives.- 4. Local Efficiency and Asymptotic Power of the Score Statistic.- 5. Asymptotic Power of the Likelihood Ratio Test: Simple Hypothesis.- 6. Asymptotic Powers of the Score and LR Statistics for Composite Hypotheses with Nuisance Parameters.- 7. An Efficient Test of Composite Hypotheses with Contiguous Alternatives.- 8. Examples.- 9. Bibliographical Notes.- 4. Mixture Experiments and Conditional Inference.- 1. Introduction.- 2. Mixture of Exponential Families.- 3. Some Examples.- 4. Efficient Conditional Tests with Reference to L.- 5. Efficient Conditional Tests with Reference to L?.- 6. Efficient Conditional Tests with Reference to LC: Bahadur Efficiency.- 7. Efficiency of Conditional Maximum Likelihood Estimators.- 8. Conditional Tests for Markov Sequences and Their Mixtures.- 9. Some Heuristic Remarks about Conditional Inference for the General Model.- 10. Bibliographical Notes.- 5. Some Non-local Results.- 1. Introduction.- 2. Non-local Behaviour of the Likelihood Ratio.- 3. Examples.- 4. Non-local Efficiency Results for Simple Likelihood Ratio Tests.- 5. Bibiographical Notes.- Appendices.- A.1 Uniform and Continuous Convergence.- A.2 Contiguity of Probability Measures.- References.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 7,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Antiquariat Bookfarm, Löbnitz, Germania
Ehemaliges Bibliotheksexemplar mit Stempel innen und Bibliothekssignatur auf Einband in gutem Zustand. Ex-library with stamp and catalogue number on spine. GOOD condition, some traces of use. Sk 488 0387908102 Sprache: Englisch Gewicht in Gramm: 550. Codice articolo 2079648
Quantità: 1 disponibili
Da: ThriftBooks-Dallas, Dallas, TX, U.S.A.
Paperback. Condizione: Very Good. No Jacket. Former library book; May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 0.6. Codice articolo G0387908102I4N10
Quantità: 1 disponibili
Da: Phatpocket Limited, Waltham Abbey, HERTS, Regno Unito
Condizione: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Codice articolo Z1-J-031-01664
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for as. Codice articolo 5911758
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc. , and non-stationary diffusion processes are typical examples of non-ergodic models for which the usual asymptotics and the efficiency criteria of the Fisher-Rao-Wald type are not directly applicable. The new model necessitates a thorough review of both technical and qualitative aspects of the asymptotic theory. The general model studied includes both ergodic and non-ergodic families even though we emphasise applications of the latter type. The plan to write the monograph originally evolved through a series of lectures given by the first author in a graduate seminar course at Cornell University during the fall of 1978, and by the second author at the University of Munich during the fall of 1979. Further work during 1979-1981 on the topic has resolved many of the outstanding conceptual and technical difficulties encountered previously. While there are still some gaps remaining, it appears that the mainstream development in the area has now taken a more definite shape.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 188 pp. Englisch. Codice articolo 9780387908106
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc. , and non-stationary diffusion processes are typical examples of non-ergodic models for which the usual asymptotics and the efficiency criteria of the Fisher-Rao-Wald type are not directly applicable. The new model necessitates a thorough review of both technical and qualitative aspects of the asymptotic theory. The general model studied includes both ergodic and non-ergodic families even though we emphasise applications of the latter type. The plan to write the monograph originally evolved through a series of lectures given by the first author in a graduate seminar course at Cornell University during the fall of 1978, and by the second author at the University of Munich during the fall of 1979. Further work during 1979-1981 on the topic has resolved many of the outstanding conceptual and technical difficulties encountered previously. While there are still some gaps remaining, it appears that the mainstream development in the area has now taken a more definite shape. 188 pp. Englisch. Codice articolo 9780387908106
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780387908106_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc. , and non-stationary diffusion processes are typical examples of non-ergodic models for which the usual asymptotics and the efficiency criteria of the Fisher-Rao-Wald type are not directly applicable. The new model necessitates a thorough review of both technical and qualitative aspects of the asymptotic theory. The general model studied includes both ergodic and non-ergodic families even though we emphasise applications of the latter type. The plan to write the monograph originally evolved through a series of lectures given by the first author in a graduate seminar course at Cornell University during the fall of 1978, and by the second author at the University of Munich during the fall of 1979. Further work during 1979-1981 on the topic has resolved many of the outstanding conceptual and technical difficulties encountered previously. While there are still some gaps remaining, it appears that the mainstream development in the area has now taken a more definite shape. Codice articolo 9780387908106
Quantità: 1 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 302. Codice articolo C9780387908106
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 188. Codice articolo 263890295
Quantità: 4 disponibili