The main subject of this book is the estimation and forecasting of continuous time processes. It leads to a development of the theory of linear processes in function spaces.The necessary mathematical tools are presented in Chapters 1 and 2. Chapters 3 to 6 deal with autoregressive processes in Hilbert and Banach spaces. Chapter 7 is devoted to general linear processes and Chapter 8 with statistical prediction. Implementation and numerical applications appear in Chapter 9. The book assumes a knowledge of classical probability theory and statistics. Denis Bosq is Professor of Statistics at the University of Paris 6 (Pierre et Marie Curie). He is Chief-Editor of Statistical Inference for Stochastic Processes and of Annales de l'ISUP, and Associate Editor of the Journal of Nonparametric Statistics. He is an elected member of the International Statistical Institute, and he has published about 100 papers or works on nonparametric statistics and five books including Nonparametric Statistics for Stochastic Processes: Estimation and Prediction, Second Edition (Springer, 1998).
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Synopsis.- 1. The object of study.- 2. Finite-dimensional linear processes.- 3. Random variables in function spaces.- 4. Limit theorems in function spaces.- 5. Autoregressive processes in Hilbert spaces.- 6. Estimation of covariance operators.- 7. Autoregressive processes in Banach spaces and representations of continuous-time processes.- 8. Linear processes in Hilbert spaces and Banach spaces.- 9. Estimation of autocorrelation operator and forecasting.- 10. Applications.- 1. Stochastic processes and random variables in function spaces.- 1.1. Stochastic processes.- 1.2. Random functions.- 1.3. Expectation and conditional expectation in Banach spaces.- 1.4. Covariance operators and characteristic functionals in Banach spaces.- 1.5. Random variables and operators in Hilbert spaces.- 1.6. Linear prediction in Hilbert spaces.- Notes.- 2. Sequences of random variables in Banach spaces.- 2.1. Stochastic processes as sequences of B-valued random variables.- 2.2. Convergence of B-random variables.- 2.3. Limit theorems for i.i.d. sequences of B-random variables.- 2.4. Sequences of dependent random variables in Banach spaces.- 2.5. * Derivation of exponential bounds.- Notes.- 3. Autoregressive Hilbertian processes of order one.- 3.1. Stationarity and innovation in Hilbert spaces.- 3.2. The ARH(1) model.- 3.3. Basic properties of ARH(1) processes.- 3.4. ARH(1) processes with symmetric compact autocorrelation operator.- 3.5. Limit theorems for ARH(1) processes.- Notes.- 4. Estimation of autocovariance operators for ARH(1) processes.- 4.1. Estimation of the covariance operator.- 4.2. Estimation of the eigenelements of C.- 4.3. Estimation of the cross-covariance operators.- 4.4. Limits in distribution.- Notes.- 5. Autoregressive Hilbertian processes of order p.- 5.1. The ARH(p) model.- 5.2. Second order moments of ARH(p).- 5.3. Limit theorems for ARH(p)processes.- 5.4. Estimation of autocovariance of an ARH(p).- 5.5. Estimation of the autoregression order.- Notes.- 6. Autoregressive processes in Banach spaces.- 1. Strong autoregressive processes in Banach spaces.- 2. Autoregressive representation of some real continuous-time processes.- 3. Limit theorems.- 4. Weak Banach autoregressive processes.- 5. Estimation of autocovariance.- 6. The case of C[0, 1].- 7. Some applications to real continuous-time processes.- Notes.- 7. General linear processes in function spaces.- 7.1. Existence and first properties of linear processes.- 7.2. Invertibility of linear processes.- 7.3. Markovian representations of LPH: applications.- 7.4. Limit theorems for LPB and LPH.- 7.5. * Derivation of invertibility.- Notes.- 8. Estimation of autocorrelation operator and prediction.- 8.1. Estimation of p if H is finite dimensional.- 8.2. Estimation of p in a special case.- 8.3. The general situation.- 8.4. Estimation of autocorrelation operator in C[0,1].- 8.5. Statistical prediction.- 8.6. * Derivation of strong consistency.- Notes.- 9. Implementation of functional autoregressive predictors and numerical applications.- 9.1. Functional data.- 9.2. Choosing and estimating a model.- 9.3. Statistical methods of prediction.- 9.4. Some numerical applications.- Notes.- Figures.- 1. Measure and probability.- 2. Random variables.- 3. Function spaces.- 4. Basic function spaces.- 5. Conditional expectation.- 6. Stochastic integral.- References.
Book by Bosq D
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Solr Books, Lincolnwood, IL, U.S.A.
Condizione: good. This book is in Good condition. There may be some notes and highligting but otherwise the book is in overall good condition. Codice articolo 5D400000B8YD_ns
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2215580174334
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 5143576-n
Quantità: 15 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 5143576
Quantità: 15 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The main subject of this book is the estimation and forecasting of continuous time processes. It leads to a development of the theory of linear processes in function spaces. Mathematical tools are presented, as well as autoregressive processes in Hilbert. Codice articolo 5912307
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 5143576-n
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The main subject of this book is the estimation and forecasting of continuous time processes. It leads to a development of the theory of linear processes in function spaces.The necessary mathematical tools are presented in Chapters 1 and 2. Chapters 3 to 6 deal with autoregressive processes in Hilbert and Banach spaces. Chapter 7 is devoted to general linear processes and Chapter 8 with statistical prediction. Implementation and numerical applications appear in Chapter 9. The book assumes a knowledge of classical probability theory and statistics. Denis Bosq is Professor of Statistics at the University of Paris 6 (Pierre et Marie Curie). He is Chief-Editor of Statistical Inference for Stochastic Processes and of Annales de l'ISUP, and Associate Editor of the Journal of Nonparametric Statistics. He is an elected member of the International Statistical Institute, and he has published about 100 papers or works on nonparametric statistics and five books including Nonparametric Statistics for Stochastic Processes: Estimation and Prediction, Second Edition (Springer, 1998). 304 pp. Englisch. Codice articolo 9780387950525
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 5143576
Quantità: Più di 20 disponibili
Da: BennettBooksLtd, San Diego, NV, U.S.A.
paperback. Condizione: New. In shrink wrap. Looks like an interesting title! Codice articolo Q-0387950524
Quantità: 1 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Linear Processes in Function Spaces | Theory and Applications | Denis Bosq | Taschenbuch | xiv | Englisch | 2000 | Springer | EAN 9780387950525 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Codice articolo 105791830
Quantità: 5 disponibili