Model Selection and Multimodel Inference: A Practical Information Theoretic Approach - Rilegato

Burnham, Kenneth P.; Anderson, David R.

 
9780387953649: Model Selection and Multimodel Inference: A Practical Information Theoretic Approach

Sinossi

A unique and comprehensive text on the philosophy of model-based data analysis and strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. It contains several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. The text has been written for biologists and statisticians using models for making inferences from empirical data.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

Introduction * Information and Likelihood Theory: A Basis for Model Selection and Inference * Basic Use of the Information-Theoretic Approach * Formal Inference From More Than One Model: Multi-Model Inference (MMI) * Monte Carlo Insights and Extended Examples * Statistical Theory and Numerical Results * Summary

Product Description

Book by Kenneth P Burnham David Anderson

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9781441929730: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach

Edizione in evidenza

ISBN 10:  1441929738 ISBN 13:  9781441929730
Casa editrice: Springer, 2010
Brossura