Articoli correlati a Likelihood, Bayesian, and McMc Methods in Quantitative...

Likelihood, Bayesian, and McMc Methods in Quantitative Genetics - Rilegato

 
9780387954400: Likelihood, Bayesian, and McMc Methods in Quantitative Genetics

Sinossi

This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits. Although a number of excellent texts in these areas have become available in recent years, the basic ideas and tools are typically described in a technically demanding style and contain much more detail than necessary. Here, an effort has been made to relate biological to statistical parameters throughout, and the book includes extensive examples that illustrate the developing argument.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Recensione

From the reviews:

BIOINFORMATICS

"I found the coverage of material to be excellent: well chosen and well written, and I didn’t spot a single typographical error...It can serve as a resource book for masters-level taught courses, but will be most useful for PhD students and other researchers who need to fill in the gaps in their knowledge, grasp the intuition behind statistical techniques, models, and algorithms, and find pointers to more extensive treatments. Overall, I find that the authors have succeeded admirably in their goals. I highly recommend this excellent book to any researcher seeking a graduate-level introduction to the modern statistical methods applied in quantitative genetics."

"Just one personal sentence as an Introduction: I like the book so much that I have decided to include several parts of it in my own lectures. ... it may be understood more easily by students and researchers that lack a strong background in statistics and mathematics. ... most examples are nicely explained. ... Summing up, I am convinced that this excellent book should be a standard book for researchers and students with a background in genetics who are interested in Bayesian and MCMC methods." (Andreas Ziegler, Metrika, February, 2004)

"Both authors ... have made significant contributions to development of statistical methods in quantitative genetics and in particular have been at the forefront of the adoption of MCMC methods for Bayesian analysis, which can be applied to an enormous range of problems ... . their coverage of likelihood methods is both extensive and fair. ... this is a valuable book, in that it presents so much background essential for the subsequent application and merits a much broader market that it is likely to get." (William G. Hill, Genetical Research, Vol. 81, 2003)

"The coverage of Bayesian theory is extensive, and includes a discussion of information and entropy, and of the notion ‘uninformative’ priors, as well as model assessment and model averaging. ... I found the coverage of material to be excellent: well chosen and well written, and I didn’t spot a single typographical error. ... the authors have succeeded admirably in their goals. I highly recommend this excellent book to any researcher seeking a graduate-level introduction to the modern statistical methods applied in quantitative genetics." (David Balding, Bioinformatics, July, 2003)

"The book is aimed at students and researchers in agriculture, biology and medicine. ... Statisticians will appreciate the attempt to relate biological to statistical parameters. In conclusion the book shows that the authors have a lot of experience with applications of statistics to quantitative genetics. Much more details are given in this book than usual, so it can be considered and recommended for classroom use." (Prof. Dr. W. Urfer, Statistical Papers, Vol. 46 (4), 2005)

" [T]he book is worth owning for anyone interested in applying likelihood or Bayesian models, especially realistic models that may require MCMC for implementation." (Journal of the American Statistical Associaton)

Contenuti

Preface I Review of Probability and Distribution Theory 1 Probability and Random Variables 1.1 Introduction 1.2 Univariate Discrete Distributions 1.2.1 The Bernoulli and Binomial Distributions 1.2.2 The Poisson Distribution 1.2.3 Binomial Distribution: Normal Approximation 1.3 Univariate Continuous Distributions 1.3.1 The Uniform, Beta, Gamma, Normal, and Student-t Distributions 1.4 Multivariate Probability Distributions 1.4.1 The Multinomial Distribution 1.4.2 The Dirichlet Distribution 1.4.3 The d-Dimensional Uniform Distribution 1.4.4 The Multivariate Normal Distribution 1.4.5 The Chi-square Distribution 1.4.6 The Wishart and Inverse Wishart Distributions 1.4.7 The Multivariate-t Distribution 1.5 Distributions with Constrained Sample Space 1.6 Iterated Expectations 2 Functions of Random Variables 2.1 Introduction 2.2 Functions of a Single Random Variable 2.2.1 Discrete Random Variables 2.2.2 Continuous Random Variables 2.2.3 Approximating the Mean and Variance 2.2.4 Delta Method 2.3 Functions of Several Random Variables 2.3.1 Linear Transformations 2.3.2 Approximating the Mean and Covariance Matrix II Methods of Inference 3 An Introduction to Likelihood Inference 3.1 Introduction 3.2 The Likelihood Function 3.3 The Maximum Likelihood Estimator 3.4 Likelihood Inference in a Gaussian Model 3.5 Fisher’s Information Measure 3.5.1 Single Parameter Case 3.5.2 Alternative Representation of Information 3.5.3 Mean and Variance of the Score Function 3.5.4 Multiparameter Case 3.5.5 Cramer–Rao Lower Bound 3.6 Sufficiency 3.7 Asymptotic Properties: Single Parameter Models 3.7.1 Probability of the Data Given the Parameter 3.7.2 Consistency 3.7.3 Asymptotic Normality and Effciency 3.8 Asymptotic Properties: Multiparameter Models 3.9 Functional Invariance 3.9.1 Illustration of FunctionalInvariance 3.9.2 Invariance in a Single Parameter Model 3.9.3 Invariance in a Multiparameter Model 4 Further Topics in Likelihood Inference 4.1 Introduction 4.2 Computation of Maximum Likelihood Estimates 4.3 Evaluation of Hypotheses 4.3.1 Likelihood Ratio Tests 4.3.2 Con.dence Regions 4.3.3 Wald's Test 4.3.4 Score Test 4.4 Nuisance Parameters 4.4.1 Loss of Efficiency Due to Nuisance Parameters 4.4.2 Marginal Likelihoods 4.4.3 Profile Likelihoods 4.5 Analysis of a Multinomial Distribution 4.5.1 Amount of Information per Observation 4.6 Analysis of Linear Logistic Models 4.6.1 The Logistic Distribution 4.6.2 Likelihood Function under Bernoulli Sampling 4.6.3 Mixed Effects Linear Logistic Model 5 An Introduction to Bayesian Inference 5.1 Introduction 5.2 Bayes Theorem: Discrete Case 5.3 Bayes Theorem: Continuous Case 5.4 Posterior Distributions 5.5 Bayesian Updating 5.6 Features of Posterior Distributions 5.6.1 Posterior Probabilities 5.6.2 Posterior Quantiles 5.6.3 Posterior Modes 5.6.4 Posterior Mean Vector and Covariance Matrix 6 Bayesian Analysis of Linear Models 6.1 Introduction 6.2 The Linear Regression Model 6.2.1 Inference under Uniform Improper Priors 6.2.2 Inference under Conjugate Priors 6.2.3 Orthogonal Parameterization of the Model 6.3 The Mixed Linear Model 6.3.1 Bayesian View of the Mixed Effects Model 6.3.2 Joint and Conditional Posterior Distributions 6.3.3 Marginal Distribution of Variance Components 6.3.4 Marginal Distribution of Location Parameters 7 The Prior Distribution and Bayesian Analysis 7.1 Introduction 7.2 An Illustration of the Effect of Priors on Inferences 7.3 A Rapid Tour of Bayesian Asymptotics 7.3.1 Discrete Parameter 7.3.2 Continuous Parameter 7.4 Statistical Information and Entropy 7.4.1 Information 7.4.2 Entropy of a Discrete

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer Nature
  • Data di pubblicazione2007
  • ISBN 10 0387954406
  • ISBN 13 9780387954400
  • RilegaturaCopertina rigida
  • LinguaInglese
  • Numero di pagine740
  • Contatto del produttorenon disponibile

Compra usato

XVII, 740 p. Hardcover Versand...
Visualizza questo articolo

EUR 10,00 per la spedizione da Germania a Italia

Destinazione, tempi e costi

EUR 26,39 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Risultati della ricerca per Likelihood, Bayesian, and McMc Methods in Quantitative...

Foto dell'editore

Sorensen, D.; D. Gianola
Editore: New York, Springer, ., 2002
ISBN 10: 0387954406 ISBN 13: 9780387954400
Antico o usato Rilegato

Da: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

XVII, 740 p. Hardcover Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Corr. 2nd. print. 2004. Stamped. Statistics for Biology and Health. Sprache: Englisch. Codice articolo 307GB

Contatta il venditore

Compra usato

EUR 18,00
Convertire valuta
Spese di spedizione: EUR 10,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Gianola, Daniel,Sorensen, Daniel
Editore: Springer, 2002
ISBN 10: 0387954406 ISBN 13: 9780387954400
Antico o usato Rilegato

Da: HPB-Red, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_288676382

Contatta il venditore

Compra usato

EUR 41,24
Convertire valuta
Spese di spedizione: EUR 95,00
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Sorensen, Daniel
Editore: Springer, 2002
ISBN 10: 0387954406 ISBN 13: 9780387954400
Nuovo Rilegato

Da: Toscana Books, AUSTIN, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Codice articolo Scanned0387954406

Contatta il venditore

Compra nuovo

EUR 162,96
Convertire valuta
Spese di spedizione: EUR 26,39
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Sorensen, Daniel; Gianola, Daniel
Editore: Springer, 2002
ISBN 10: 0387954406 ISBN 13: 9780387954400
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9780387954400_new

Contatta il venditore

Compra nuovo

EUR 362,21
Convertire valuta
Spese di spedizione: EUR 10,71
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Daniel Sorensen|Daniel Gianola
Editore: Springer New York, 2002
ISBN 10: 0387954406 ISBN 13: 9780387954400
Nuovo Rilegato

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Key background given, including a review of probability and distribution theoryEnables access to the theories for less technically proficient biology and agriculture studentsThe relationship between biological and statistical parameters is . Codice articolo 5912532

Contatta il venditore

Compra nuovo

EUR 373,19
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Daniel Gianola
ISBN 10: 0387954406 ISBN 13: 9780387954400
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Over the last ten years the introduction of computer intensive statistical methods has opened new horizons concerning the probability models that can be fitted to genetic data, the scale of the problems that can be tackled and the nature of the questions that can be posed. In particular, the application of Bayesian and likelihood methods to statistical genetics has been facilitated enormously by these methods. Techniques generally referred to as Markov chain Monte Carlo (MCMC) have played a major role in this process, stimulating synergies among scientists in different fields, such as mathematicians, probabilists, statisticians, computer scientists and statistical geneticists. Specifically, the MCMC 'revolution' has made a deep impact in quantitative genetics. This can be seen, for example, in the vast number of papers dealing with complex hierarchical models and models for detection of genes affecting quantitative or meristic traits in plants, animals and humans that have been published recently. This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits. Most students in biology and agriculture lack the formal background needed to learn these modern biometrical techniques. Although a number of excellent texts in these areas have become available in recent years, the basic ideas and tools are typically described in a technically demanding style, and have been written by and addressed to professional statisticians. For this reason, considerable more detail is offered than what may be warranted for a more mathematically apt audience. The book is divided into four parts. Part I gives a review of probability and distribution theory. Parts II and III present methods of inference and MCMC methods. Part IV discusses several models that can be applied in quantitative genetics, primarily from a bayesian perspective.An effort has been made to relate biological to statistical parameters throughout, and examples are used profusely to motivate the developments. 760 pp. Englisch. Codice articolo 9780387954400

Contatta il venditore

Compra nuovo

EUR 374,49
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Daniel Gianola
ISBN 10: 0387954406 ISBN 13: 9780387954400
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Over the last ten years the introduction of computer intensive statistical methods has opened new horizons concerning the probability models that can be fitted to genetic data, the scale of the problems that can be tackled and the nature of the questions that can be posed. In particular, the application of Bayesian and likelihood methods to statistical genetics has been facilitated enormously by these methods. Techniques generally referred to as Markov chain Monte Carlo (MCMC) have played a major role in this process, stimulating synergies among scientists in different fields, such as mathematicians, probabilists, statisticians, computer scientists and statistical geneticists. Specifically, the MCMC 'revolution' has made a deep impact in quantitative genetics. This can be seen, for example, in the vast number of papers dealing with complex hierarchical models and models for detection of genes affecting quantitative or meristic traits in plants, animals and humans that have been published recently. This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits. Most students in biology and agriculture lack the formal background needed to learn these modern biometrical techniques. Although a number of excellent texts in these areas have become available in recent years, the basic ideas and tools are typically described in a technically demanding style, and have been written by and addressed to professional statisticians. For this reason, considerable more detail is offered than what may be warranted for a more mathematically apt audience. The book is divided into four parts. Part I gives a review of probability and distribution theory. Parts II and III present methods of inference and MCMC methods. Part IV discusses several models that can be applied in quantitative genetics, primarily from a bayesian perspective.An effort has been made to relate biological to statistical parameters throughout, and examples are used profusely to motivate the developments. Codice articolo 9780387954400

Contatta il venditore

Compra nuovo

EUR 388,16
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

SORENSEN/GIANOLA
Editore: SPRINGER, 2002
ISBN 10: 0387954406 ISBN 13: 9780387954400
Antico o usato Rilegato

Da: OM Books, Sevilla, SE, Spagna

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Usado - bueno. Codice articolo 9780387954400

Contatta il venditore

Compra usato

EUR 413,00
Convertire valuta
Spese di spedizione: EUR 17,50
Da: Spagna a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello