Describes fifteen years' work which has led to the construc-tion of solutions to non-linear relativistic local field e-quations in 2 and 3 space-time dimensions. Gives proof ofthe existence theorem in 2 dimensions and describes manyproperties of the solutions.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
I An Introduction to Modern Physics.- 1 Quantum Theory.- 1.1 Overview.- 1.2 Classical Mechanics.- 1.3 Quantum Mechanics.- 1.4 Interpretation.- 1.5 The Simple Harmonic Oscillator.- 1.6 Coulomb Potentials.- 1.7 The Hydrogen Atom.- 1.8 The Need for Quantum Fields.- 2 Classical Statistical Mechanics.- 2.1 Introduction.- 2.2 The Classical Ensembles.- 2.3 The Ising Model and Lattice Fields.- 2.4 Series Expansion Methods.- 3 The Feynman-Kac Formula.- 3.1 Wiener Measure.- 3.2 The Feynman-Kac Formula.- 3.3 Uniqueness of the Ground State.- 3.4 The Renormalized Feynman-Kac Formula.- 4 Correlation Inequalities and the Lee-Yang Theorem.- 4.1 Griffiths Inequalities.- 4.2 The Infinite Volume Limit.- 4.3 ?4 Inequalities.- 4.4 The FKG Inequality.- 4.5 The Lee-Yang Theorem.- 4.6 Analyticity of the Free Energy.- 4.7 Two Component Spins.- 5 Phase Transitions and Critical Points.- 5.1 Pure and Mixed Phases.- 5.2 The Mean Field Picture.- 5.3 Symmetry, Breaking.- 5.4 The Droplet Model and Peierls’ Argument.- 5.5 Some Examples.- 6 Field Theory.- 6.1 Axioms.- (i) Euclidean Axioms.- (ii) Minkowski Space Axioms.- 6.2 The Free Field.- 6.3 Fock Space and Wick Ordering.- 6.4 Canonical Quantization.- 6.5 Fermions.- 6.6 Interacting Fields.- Appendix to Part I. Hilbert Space Operators and Functional Integrals.- A.1 Bounded and Unbounded Operators on Hilbert Space.- A.2 Positive Operators and Bilinear Forms.- A.3 Trace Class Operators and Nuclear Spaces.- A.4 Gaussian Measures.- A.5 The Lie Product Theorem.- A.6 The Bochner-Minlos Theorem.- A.7 Stochastic Integrals.- A.8 Stochastic Differential Equations.- II Function Space Integrals.- 7 Covariance Operator = Green’s Function = Resolvent Kernel = Euclidean Propagator = Fundamental Solution.- 7.1 Introduction.- 7.2 The Free Covariance.- 7.3 Periodic Boundary Conditions.- 7.4 Neumann Boundary Conditions.- 7.5 Dirichlet Boundary Conditions.- 7.6 Change of Boundary Conditions.- 7.7 Covariance Operator Inequalities.- 7.8 More General Dirichlet Data.- 7.9 Regularity of CB.- 7.10 Reflection Positivity.- 8 Quantization = Integration over Function Space.- 8.1 Introduction.- 8.2 Feynman Graphs.- 8.3 Wick Products.- 8.4 Formal Perturbation Theory.- 8.5 Estimates on Gaussian Integrals.- 8.6 Non-Gaussian Integrals, d = 2.- 8.7 Finite Dimensional Approximations.- 9 Calculus and Renormalization on Function Space.- 9.1 A Compilation of Useful Formulas.- (i) Wick Product Identities.- (ii) Gaussian Integrals.- (iii) Integration by Parts.- (iv) Limits of Measures.- 9.2 Infinitesimal Change of Covariance.- 9.3 Quadratic Perturbations.- 9.4 Perturbative Renormalization.- 9.5 Lattice Laplace and Covariance Operators.- 9.6 Lattice Approximation of P(?)2 Measures.- 10 Estimates Independent of Dimension.- 10.1 Introduction.- 10.2 Correlation Inequalities for P(?)2 Fields.- 10.3 Dirichlet or Neumann Monotonicity and Decoupling.- 10.4 Reflection Positivity.- 10.5 Multiple Reflections.- 10.6 Nonsymmetric Reflections.- 11 Fields Without Cutoffs.- 11.1 Introduction.- 11.2 Monotone Convergence.- 11.3 Upper Bounds.- 12 Regularity and Axioms.- 12.1 Introduction.- 12.2 Integration by Parts.- 12.3 Nonlocal ?j Bounds.- 12.4 Uniformity in the Volume.- 12.5 Regularity of the P(?)2 Field.- III The Physics of Quantum Fields.- 13 Scattering Theory: Time-Dependent Methods.- 13.1 Introduction.- 13.2 Multiparticle Potential Scattering.- 13.3 The Wave Operator for Quantum Fields.- 13.4 Wave Packets for Free Particles.- 13.5 The Haag-Ruelle Theory.- 14 Scattering Theory: Time-Independent Methods.- 14.1 Time-Ordered Correlation Functions.- 14.2 The S Matrix.- 14.3 Renormalization.- 14.4 The Bethe-Salpeter Kernel.- 15 The Magnetic Moment of the Electron.- 15.1 Classical Magnetic Moments.- 15.2 The Fine Structure of the Hydrogen Atom and the Dirac Equation.- 15.3 The Dirac Theory.- 15.4 The Anomalous Moment.- 15.5 The Hyperfine Structure and the Lamb Shift of the Hydrogen Atom.- 16 Phase Transitions.- 16.1 Introduction.- 16.2 The Two Phase Region.- 16.3 Symmetry Unbroken, d = 2.- 16.4 Symmetry Broken, 3 ? d.- 17 The ?4 Critical Point.- 17.1 Elementary Considerations.- 17.2 The Absence of Even Bound States.- 17.3 A Bound on the Coupling Constant ?phys.- 17.4 Existence of Particles and a Bound on dm2/ d?.- 17.5 Existence of the ?4 Critical Point.- 17.6 Continuity of dµ at the Critical Point.- 17.7 Critical Exponents.- 17.8 ? ? 1.- 17.9 The Scaling Limit.- 17.10 The Conjecture ?(6) ? 0.- 18 The Cluster Expansion.- 18.1 Introduction.- 18.2 The Cluster Expansion.- 18.3 Clustering and Analyticity.- 18.4 Convergence: The Main Ideas.- 18.5 An Equation of Kirkwood-Salsburg Type.- 18.6 Covariance Operators.- 18.7 Convergence: The Proof Completed.- 19 From Path Integrals to Quantum Mechanics.- 19.1 Reconstruction of Quantum Fields.- 19.2 The Feynman-Kac Formula.- 19.3 Self-Adjoint Fields.- 19.4 Commutators.- 19.5 Lorentz Covariance.- 19.6 Locality.- 19.7 Uniqueness of the Vacuum.- 20 The Polymer Expansion.- 20.1 Introduction.- 20.2 Activity Expansions and Connected Polymers.- 20.3 Convergence of the Polymer Expansion.- 20.4 The Tree Graph Decay of Correlations and the Existence of the Free Energy.- 20.5 Polymer Expansion Examples.- (i) The High Temperature Ising Model.- (ii) The Weak Coupling of Euclidean Quantum Fields.- (iii) Mayer Expansion of the Grand Canonical Partition Function.- (iv) Low Temperature Ising Model.- 21 Random Path Representations.- 21.1 Random Walks and the Laplacian.- 21.2 Local Stopping Times.- 21.3 Gaussian Integration by Parts.- 21.4 Non-Gaussian Integration by Parts.- 21.5 ?4Correlation Inequalities.- 21.6 The ?4 Noninteraction Theorem.- 22 Constructive Gauge Theory and Phase Cell Localization.- 22.1 Introduction.- 22.2 Regularization and Lattice Approximations.- 22.3 Reflection Positivity of the Lattice Approximation.- 22.4 Phase Cell Localization and Exact Renormalization Transformations.- 22.5 Infra-Red Behavior.- 22.6 Lattice Maxwell Theory―An Example of Renormalization.- 22.7 Nonabelian Gauge Models.- 23 Further Directions.- 23.1 The $$\phi _3^4 $$ Model.- 23.2 Borel Summability.- 23.3 Euclidean Fermi Fields.- 23.4 Yukawa Interactions.- 23.5 Low Temperature Expansions and Phase Transitions.- 23.6 Debye Screening and the Sine-Gordon Transformation.- 23.7 Dipoles Don’t Screen.- 23.8 Solitons.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,95 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Germania
Broschiert. Condizione: Gut. 2. Auflage;. 535 Seiten; Das hier angebotene Buch stammt aus einer teilaufgelösten Bibliothek und kann die entsprechenden Kennzeichnungen aufweisen (Rückenschild, Instituts-Stempel.); der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 815. Codice articolo 2194428
Quantità: 1 disponibili
Da: SecondSale, Montgomery, IL, U.S.A.
Condizione: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00085037009
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Describes fifteen years work which has led to the construc-tion of solutions to non-linear relativistic local field e-quations in 2 and 3 space-time dimensions. Gives proof ofthe existence theorem in 2 dimensions and describes manyproperties of . Codice articolo 5912751
Quantità: Più di 20 disponibili
Da: BennettBooksLtd, North Las Vegas, NV, U.S.A.
paperback. Condizione: New. In shrink wrap. Looks like an interesting title! Codice articolo Q-0387964770
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780387964775_new
Quantità: Più di 20 disponibili
Da: HPB-Diamond, Dallas, TX, U.S.A.
paperback. Condizione: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! Codice articolo S_431125809
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Describes fifteen years' work which has led to the construction of solutions to non-linear relativistic local field equations in 2 and 3 space-time dimensions. Gives proof ofthe existence theorem in 2 dimensions and describes manyproperties of the solutions. 560 pp. Englisch. Codice articolo 9780387964775
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Describes fifteen years' work which has led to the construction of solutions to non-linear relativistic local field equations in 2 and 3 space-time dimensions. Gives proof ofthe existence theorem in 2 dimensions and describes manyproperties of the solutions.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 560 pp. Englisch. Codice articolo 9780387964775
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Describes fifteen years' work which has led to the construction of solutions to non-linear relativistic local field equations in 2 and 3 space-time dimensions. Gives proof ofthe existence theorem in 2 dimensions and describes manyproperties of the solutions. Codice articolo 9780387964775
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 562 2nd Edition. Codice articolo 263871339
Quantità: 4 disponibili