Representation Theory: A First Course

Valutazione media 3,65
( su 17 valutazioni fornite da GoodReads )
 
9780387974958: Representation Theory: A First Course

The primary goal of these lectures is to introduce a beginner to the finite- dimensional representations of Lie groups and Lie algebras. Since this goal is shared by quite a few other books, we should explain in this Preface how our approach differs, although the potential reader can probably see this better by a quick browse through the book. Representation theory is simple to define: it is the study of the ways in which a given group may act on vector spaces. It is almost certainly unique, however, among such clearly delineated subjects, in the breadth of its interest to mathematicians. This is not surprising: group actions are ubiquitous in 20th century mathematics, and where the object on which a group acts is not a vector space, we have learned to replace it by one that is {e. g. , a cohomology group, tangent space, etc. }. As a consequence, many mathematicians other than specialists in the field {or even those who think they might want to be} come in contact with the subject in various ways. It is for such people that this text is designed. To put it another way, we intend this as a book for beginners to learn from and not as a reference. This idea essentially determines the choice of material covered here. As simple as is the definition of representation theory given above, it fragments considerably when we try to get more specific.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti:

I: Finite Groups.- 1. Representations of Finite Groups.- §1.1: Definitions.- §1.2: Complete Reducibility; Schur’s Lemma.- §1.3: Examples: Abelian Groups; $$ {\mathfrak{S}_3}$$.- 2. Characters.- §2.1: Characters.- §2.2: The First Projection Formula and Its Consequences.- §2.3: Examples: $$ {\mathfrak{S}_4}$$ and $$ {\mathfrak{A}_4}$$.- §2.4: More Projection Formulas; More Consequences.- 3. Examples; Induced Representations; Group Algebras; Real Representations.- §3.1: Examples: $$ {\mathfrak{S}_5}$$ and $$ {\mathfrak{A}_5}$$.- §3.2: Exterior Powers of the Standard Representation of $$ {\mathfrak{S}_d}$$.- §3.3: Induced Representations.- §3.4: The Group Algebra.- §3.5: Real Representations and Representations over Subfields of $$ \mathbb{C}$$.- 4. Representations of: $$ {\mathfrak{S}_d}$$ Young Diagrams and Frobenius’s Character Formula.- §4.1: Statements of the Results.- §4.2: Irreducible Representations of $$ {\mathfrak{S}_d}$$.- §4.3: Proof of Frobenius’s Formula.- 5. Representations of $$ {\mathfrak{A}_d}$$ and $$ G{L_2}\left( {{\mathbb{F}_q}} \right)$$.- §5.1: Representations of $$ {\mathfrak{A}_d}$$.- §5.2: Representations of $$ G{L_2}\left( {{\mathbb{F}_q}} \right)$$ and $$ S{L_2}\left( {{\mathbb{F}_q}} \right)$$.- 6. Weyl’s Construction.- §6.1: Schur Functors and Their Characters.- §6.2: The Proofs.- II: Lie Groups and Lie Algebras.- 7. Lie Groups.- §7.1: Lie Groups: Definitions.- §7.2: Examples of Lie Groups.- §7.3: Two Constructions.- 8. Lie Algebras and Lie Groups.- §8.1: Lie Algebras: Motivation and Definition.- §8.2: Examples of Lie Algebras.- §8.3: The Exponential Map.- 9. Initial Classification of Lie Algebras.- §9.1: Rough Classification of Lie Algebras.- §9.2: Engel’s Theorem and Lie’s Theorem.- §9.3: Semisimple Lie Algebras.- §9.4: Simple Lie Algebras.- 10. Lie Algebras in Dimensions One, Two, and Three.- §10.1: Dimensions One and Two.- §10.2: Dimension Three, Rank 1.- §10.3: Dimension Three, Rank 2.- §10.4: Dimension Three, Rank 3.- 11. Representations of $$ \mathfrak{s}{\mathfrak{l}_2}\mathbb{C}$$.- §11.1: The Irreducible Representations.- §11.2: A Little Plethysm.- §11.3: A Little Geometric Plethysm.- 12. Representations of $$ \mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$ Part I.- 13. Representations of $$ \mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$ Part II: Mainly Lots of Examples.- §13.1: Examples.- §13.2: Description of the Irreducible Representations.- §13.3: A Little More Plethysm.- §13.4: A Little More Geometric Plethysm.- III: The Classical Lie Algebras and Their Representations.- 14. The General Set-up: Analyzing the Structure and Representations of an Arbitrary Semisimple Lie Algebra.- §14.1: Analyzing Simple Lie Algebras in General.- §14.2: About the Killing Form.- 15. $$ \mathfrak{s}{\mathfrak{l}_4}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.- §15.1: Analyzing $$ \mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.- §15.2: Representations of $$ \mathfrak{s}{\mathfrak{l}_4}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.- §15.3: Weyl’s Construction and Tensor Products.- §15.4: Some More Geometry.- §15.5: Representations of $$ G{L_n}\mathbb{C}$$.- 16. Symplectic Lie Algebras.- §16.1: The Structure of $$ S{p_{2n}}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$.- §16.2: Representations of $$ \mathfrak{s}{\mathfrak{p}_4}\mathbb{C}$$.- 17. $$ \mathfrak{s}{\mathfrak{p}_6}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$.- §17.1: Representations of $$ \mathfrak{s}{\mathfrak{p}_6}\mathbb{C}$$.- §17.2: Representations of $$ \mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$ in General.- §17.3: Weyl’s Construction for Symplectic Groups.- 18. Orthogonal Lie Algebras.- §18.1: $$ S{O_m}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.- §18.2: Representations of $$ \mathfrak{s}{\mathfrak{o}_3}\mathbb{C},$$$$ \mathfrak{s}{\mathfrak{o}_4}\mathbb{C},$$ and $$ \mathfrak{s}{\mathfrak{o}_5}\mathbb{C}$$.- 19. $$ \mathfrak{s}{\mathfrak{o}_6}\mathbb{C},$$$$ \mathfrak{s}{\mathfrak{o}_7}\mathbb{C},$$ and $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.- §19.1: Representations of $$ \mathfrak{s}{\mathfrak{o}_6}\mathbb{C}$$.- §19.2: Representations of the Even Orthogonal Algebras.- §19.3: Representations of $$ \mathfrak{s}{\mathfrak{o}_7}\mathbb{C}$$.- §19.4. Representations of the Odd Orthogonal Algebras.- §19.5: Weyl’s Construction for Orthogonal Groups.- 20. Spin Representations of $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.- §20.1: Clifford Algebras and Spin Representations of $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.- §20.2: The Spin Groups $$ Spi{n_m}\mathbb{C}$$ and $$ Spi{n_m}\mathbb{R}$$.- §20.3: $$ Spi{n_8}\mathbb{C}$$ and Triality.- IV: Lie Theory.- 21. The Classification of Complex Simple Lie Algebras.- §21.1: Dynkin Diagrams Associated to Semisimple Lie Algebras.- §21.2: Classifying Dynkin Diagrams.- §21.3: Recovering a Lie Algebra from Its Dynkin Diagram.- 22. $$ {g_2}$$and Other Exceptional Lie Algebras.- §22.1: Construction of $$ {g_2}$$ from Its Dynkin Diagram.- §22.2: Verifying That $$ {g_2}$$ is a Lie Algebra.- §22.3: Representations of $${{\mathfrak{g}}_{2}} $$.- §22.4: Algebraic Constructions of the Exceptional Lie Algebras.- 23. Complex Lie Groups; Characters.- §23.1: Representations of Complex Simple Groups.- §23.2: Representation Rings and Characters.- §23.3: Homogeneous Spaces.- §23.4: Bruhat Decompositions.- 24. Weyl Character Formula.- §24.1: The Weyl Character Formula.- §24.2: Applications to Classical Lie Algebras and Groups.- 25. More Character Formulas.- §25.1: Freudenthal’s Multiplicity Formula.- §25.2: Proof of (WCF); the Kostant Multiplicity Formula.- §25.3: Tensor Products and Restrictions to Subgroups.- 26. Real Lie Algebras and Lie Groups.- §26.1: Classification of Real Simple Lie Algebras and Groups.- §26.2: Second Proof of Weyl’s Character Formula.- §26.3: Real, Complex, and Quaternionic Representations.- Appendices.- A. On Symmetric Functions.- §A.1: Basic Symmetric Polynomials and Relations among Them.- §A.2: Proofs of the Determinantal Identities.- §A.3: Other Determinantal Identities.- B. On Multilinear Algebra.- §B.1: Tensor Products.- §B.2: Exterior and Symmetric Powers.- §B.3: Duals and Contractions.- C. On Semisimplicity.- §C.1: The Killing Form and Caftan’s Criterion.- §C.2: Complete Reducibility and the Jordan Decomposition.- §C.3: On Derivations.- D. Cartan Subalgebras.- §D.1: The Existence of Cartan Subalgebras.- §D.2: On the Structure of Semisimple Lie Algebras.- §D.3: The Conjugacy of Cartan Subalgebras.- §D.4: On the Weyl Group.- E. Ado’s and Levi’s Theorems.- §E.1: Levi’s Theorem.- §E.2: Ado’s Theorem.- F. Invariant Theory for the Classical Groups.- §F.1: The Polynomial Invariants.- §F.2: Applications to Symplectic and Orthogonal Groups.- §F.3: Proof of Capelli’s Identity.- Hints, Answers, and References.- Index of Symbols.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

I migliori risultati di ricerca su AbeBooks

1.

Fulton, William; Harris, Joe
Editore: Springer-Verlag New York Inc., United States (1999)
ISBN 10: 0387974954 ISBN 13: 9780387974958
Nuovi Paperback Quantità: 1
Da
The Book Depository
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc., United States, 1999. Paperback. Condizione libro: New. 231 x 155 mm. Language: English . Brand New Book. The primary goal of these lectures is to introduce a beginner to the finite- dimensional representations of Lie groups and Lie algebras. Since this goal is shared by quite a few other books, we should explain in this Preface how our approach differs, although the potential reader can probably see this better by a quick browse through the book. Representation theory is simple to define: it is the study of the ways in which a given group may act on vector spaces. It is almost certainly unique, however, among such clearly delineated subjects, in the breadth of its interest to mathematicians. This is not surprising: group actions are ubiquitous in 20th century mathematics, and where the object on which a group acts is not a vector space, we have learned to replace it by one that is {e. g. , a cohomology group, tangent space, etc. }. As a consequence, many mathematicians other than specialists in the field {or even those who think they might want to be} come in contact with the subject in various ways. It is for such people that this text is designed. To put it another way, we intend this as a book for beginners to learn from and not as a reference. This idea essentially determines the choice of material covered here. As simple as is the definition of representation theory given above, it fragments considerably when we try to get more specific. 1st Corrected ed. 2004. Corr. 3rd printing 1999. Codice libro della libreria AAU9780387974958

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 43,94
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

2.

Fulton, William; Harris, Joe
Editore: Springer-Verlag New York Inc. (1999)
ISBN 10: 0387974954 ISBN 13: 9780387974958
Nuovi Brossura Quantità: 2
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc., 1999. Condizione libro: New. Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups. Series: Graduate Texts in Mathematics. Num Pages: 566 pages, biography. BIC Classification: PBG; PBKF. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 234 x 160 x 30. Weight in Grams: 790. . 1999. Corrected. Paperback. . . . . . Codice libro della libreria V9780387974958

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 48,54
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Irlanda a: U.S.A.
Destinazione, tempi e costi

3.

Fulton, William; Harris, Joe
Editore: Springer-Verlag New York Inc. 1991-01-01, New York, NY (1991)
ISBN 10: 0387974954 ISBN 13: 9780387974958
Nuovi paperback Quantità: > 20
Da
Blackwell's
(Oxford, OX, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc. 1991-01-01, New York, NY, 1991. paperback. Condizione libro: New. Codice libro della libreria 9780387974958

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 43,95
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 5,28
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

4.

Fulton, William; Harris, Joe
Editore: Springer-Verlag New York Inc., United States (1999)
ISBN 10: 0387974954 ISBN 13: 9780387974958
Nuovi Paperback Quantità: 1
Da
The Book Depository US
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc., United States, 1999. Paperback. Condizione libro: New. 231 x 155 mm. Language: English . Brand New Book. The primary goal of these lectures is to introduce a beginner to the finite- dimensional representations of Lie groups and Lie algebras. Since this goal is shared by quite a few other books, we should explain in this Preface how our approach differs, although the potential reader can probably see this better by a quick browse through the book. Representation theory is simple to define: it is the study of the ways in which a given group may act on vector spaces. It is almost certainly unique, however, among such clearly delineated subjects, in the breadth of its interest to mathematicians. This is not surprising: group actions are ubiquitous in 20th century mathematics, and where the object on which a group acts is not a vector space, we have learned to replace it by one that is {e. g. , a cohomology group, tangent space, etc. }. As a consequence, many mathematicians other than specialists in the field {or even those who think they might want to be} come in contact with the subject in various ways. It is for such people that this text is designed. To put it another way, we intend this as a book for beginners to learn from and not as a reference. This idea essentially determines the choice of material covered here. As simple as is the definition of representation theory given above, it fragments considerably when we try to get more specific. 1st Corrected ed. 2004. Corr. 3rd printing 1999. Codice libro della libreria AAU9780387974958

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 50,62
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

5.

Fulton, William; Harris, Joe
Editore: Springer (1999)
ISBN 10: 0387974954 ISBN 13: 9780387974958
Nuovi Brossura Quantità: 1
Da
Book Deals
(Lewiston, NY, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Springer, 1999. Condizione libro: New. Brand New, Unread Copy in Perfect Condition. A+ Customer Service! Summary: Part I: Finite Groups; 1. Representations of Finite Groups; 2. Characters; 3. Examples; Induced Representations; Groups Algebras; Real Representations; 4. Representations of Ed: Young Diagrams and Frobenius's Character Formula; 5. Representation of Ud and GL2 and (Fq); 6. Weyl's Construction; Part II: Lie Groups and Lie Algebras; 7. Lie Groups; 8. Lie Algebras and Lie Groups; 9.Initial Classification of Lie Algebras; 10. Lie Algebras in Dimensions One, Two, and Three; 11. Representation of sI2 C; 12. Representation of sI3 C, Part I; 13. Representation of sI3 C, II: Mainly Lots of Examples; Part III: The Classical Lie Algebras and Their Representations; 14. The General Set-up: Analyzing the Structure and Representations of an Arbitrary Semi simple Lie Algebra; 15. SI4 C and sIn C; 16. Symplectic Lie Algebras; 17. Sp6C and sp2n C; 18. Orthogonal Lie Algebras; 19. So6 C, so7 C, and som C; 20. Spin Representations of so m C; Part IV: Lie Theory; 21. The Classification of Complex Simple Lie Algebras; 22. G2 and Other Exceptional Lie Algebras; 23. Complex Lie Groups; Characters; 24. Weyl Character Formula; 25. More Character Formulas; 26. Real Lie Algebras and Lie Groups; Appendices A - F; Hints, Answers, and References; Bibliography; Index of Symbols; Index. Codice libro della libreria ABE_book_new_0387974954

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 50,69
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

6.

Fulton, William; Harris, Joe
Editore: Springer-Verlag New York Inc.
ISBN 10: 0387974954 ISBN 13: 9780387974958
Nuovi Brossura Quantità: 2
Da
Kennys Bookstore
(Olney, MD, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc. Condizione libro: New. Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups. Series: Graduate Texts in Mathematics. Num Pages: 566 pages, biography. BIC Classification: PBG; PBKF. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 234 x 160 x 30. Weight in Grams: 790. . 1999. Corrected. Paperback. . . . . Books ship from the US and Ireland. Codice libro della libreria V9780387974958

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 52,73
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

7.

Fulton, William; Harris, Joe
Editore: Springer-Verlag New York Inc. (1991)
ISBN 10: 0387974954 ISBN 13: 9780387974958
Nuovi Quantità: 2
Da
Books2Anywhere
(Fairford, GLOS, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc., 1991. PAP. Condizione libro: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Codice libro della libreria BB-9780387974958

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 42,34
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 10,56
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

8.

Fulton, William; Harris, Joe
Editore: Springer (1999)
ISBN 10: 0387974954 ISBN 13: 9780387974958
Nuovi Brossura Quantità: 5
Print on Demand
Da
English-Book-Service Mannheim
(Mannheim, Germania)
Valutazione libreria
[?]

Descrizione libro Springer, 1999. Condizione libro: New. This item is printed on demand for shipment within 3 working days. Codice libro della libreria KP9780387974958

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 51,18
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 4,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

9.

Fulton, William; Harris, Joe
Editore: Springer-Verlag New York Inc.
ISBN 10: 0387974954 ISBN 13: 9780387974958
Nuovi Paperback Quantità: 5
Print on Demand
Da
THE SAINT BOOKSTORE
(Southport, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc. Paperback. Condizione libro: new. BRAND NEW PRINT ON DEMAND., Representation Theory: A First Course (1st Corrected ed. 2004. Corr. 3rd printing 1999), William Fulton, Joe Harris, The primary goal of these lectures is to introduce a beginner to the finite- dimensional representations of Lie groups and Lie algebras. Since this goal is shared by quite a few other books, we should explain in this Preface how our approach differs, although the potential reader can probably see this better by a quick browse through the book. Representation theory is simple to define: it is the study of the ways in which a given group may act on vector spaces. It is almost certainly unique, however, among such clearly delineated subjects, in the breadth of its interest to mathematicians. This is not surprising: group actions are ubiquitous in 20th century mathematics, and where the object on which a group acts is not a vector space, we have learned to replace it by one that is {e. g. , a cohomology group, tangent space, etc. }. As a consequence, many mathematicians other than specialists in the field {or even those who think they might want to be} come in contact with the subject in various ways. It is for such people that this text is designed. To put it another way, we intend this as a book for beginners to learn from and not as a reference. This idea essentially determines the choice of material covered here. As simple as is the definition of representation theory given above, it fragments considerably when we try to get more specific. Codice libro della libreria B9780387974958

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 49,20
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 6,97
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

10.

Fulton, William; Harris, Joe
Editore: Springer-Verlag New York Inc. (1991)
ISBN 10: 0387974954 ISBN 13: 9780387974958
Nuovi Quantità: > 20
Print on Demand
Da
Books2Anywhere
(Fairford, GLOS, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Springer-Verlag New York Inc., 1991. PAP. Condizione libro: New. New Book. Delivered from our UK warehouse in 3 to 5 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice libro della libreria LQ-9780387974958

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 47,54
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 10,56
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Vedi altre copie di questo libro

Vedi tutti i risultati per questo libro