From the reviews: The purpose of the book under review is to give a survey of methods for the Bayesian or likelihood-based analysis of data. The author distinguishes between two types of methods: the observed data methods and the data augmentation ones. The observed data methods are applied directly to the likelihood or posterior density of the observed data. The data augmentation methods make use of the special "missing" data structure of the problem. They rely on an augmentation of the data which simplifies the likelihood or posterior density. #Zentralblatt für Mathematik#
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
I. Introduction.- A. Problems.- B. Techniques.- References.- II. Observed Data Techniques-Normal Approximation.- A. Likelihood/Posterior Density.- B. Maximum Likelihood.- C. Normal Based Inference.- D. The Delta Method.- E. Significance Levels.- References.- III. Observed Data Techniques.- A. Numerical Integration.- B. Litplace Expansion.- 1. Moments.- 2. Marginalization.- C. Monte Carlo Methods.- 1. Monte Carlo.- 2. Composition.- 3. Importance Sampling.- References.- IV. The EM Algorithm.- A. Introduction.- B. Theory.- C. EM in the Exponential Family.- D. Standard Errors.- 1. Direct Computation.- 2. Missing Information Principle.- 3. Louis’ Method.- 4. Simulation.- 5. Using EM Iterates.- E. Monte Carlo Implementation of the E-Step.- F. Acceleration of EM.- References.- V. Data Augmentation.- A. Introduction.- B. Predictive Distribution.- C. HPD Region Computations.- 1. Calculating the Content.- 2. Calculating the Boundary.- D. Implementation.- E. Theory.- F. Poor Man’s Data Augmentation.- 1. PMDA#1 65.- 2. PMDA Exact.- 3. PMDA #2.- G. SIR.- H. General Imputation Methods.- 1. Introduction.- 2. Hot Deck 72.- 3. Simple Residual.- 4. Normal and Adjusted Normal.- 5. Nonignorable Nonresponse.- a. Mixture Model-I.- b. Mixture Model-II.- c. Selection Model-I.- d. Selection Model-II.- I. Data Augmentation via Importance Sampling.- 1. General Comments.- 2. Censored Regression.- J. Sampling in the Context of Multinomial Data.- 1. Dirichlet Sampling.- 2. Latent Class Analysis.- References.- VI. The Gibbs Sampler.- A. Introduction.- 1. Chained Data Augmentation.- 2. The Gibbs Sampler.- 3. Historical Comments.- B. Examples.- 1. Rat Growth Data.- 2. Poisson Process.- 3. Generalized Linear Models.- C. The Griddy Gibbs Sampler.- 1. Example.- 2. Adaptive Grid.- References.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 7,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Antiquariat Bookfarm, Löbnitz, Germania
Ehemaliges Bibliotheksexemplar mit Stempel innen und Bibliothekssignatur auf Einband in gutem Zustand. Ex-library with stamp and catalogue number on spine. GOOD condition, some traces of use. Sk 776 038797525X Sprache: Englisch Gewicht in Gramm: 550. Codice articolo 2079960
Quantità: 1 disponibili
Da: Anybook.com, Lincoln, Regno Unito
Condizione: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,250grams, ISBN:038797525X. Codice articolo 9638160
Quantità: 1 disponibili
Da: Antiquariat Silvanus - Inhaber Johannes Schaefer, Ahrbrück, Germania
110 pp. with a lot of figures, 038797525X Sprache: Englisch Gewicht in Gramm: 200 Groß 8°, Original-Karton (Softcover), Bibliotheks-Exemplar (ordnungsgemäß entwidmet) mit Rückenschild, Stempel auf Titel, insgesamt gutes und innen sauberes Exemplar, (library copy in good condition), Codice articolo 123078
Quantità: 1 disponibili