Articoli correlati a Physics-Aware Machine Learning for Integrated Energy...

Physics-Aware Machine Learning for Integrated Energy Systems Management - Brossura

 
9780443329845: Physics-Aware Machine Learning for Integrated Energy Systems Management

Sinossi

Physics-Aware Machine Learning for Integrated Energy Systems Management, a new release in the Advances in Intelligent Energy Systems series, guides the reader through this state-of-the-art approach to computational methods, from data input and training to application opportunities in integrated energy systems. The book begins by establishing the principles, design, and needs of integrated energy systems in the modern sustainable grid before moving into assessing aspects such as sustainability, energy storage, and physical-economic models. Detailed, step-by-step procedures for utilizing a variety of physics-aware machine learning models are provided, including reinforcement learning, feature learning, and neural networks.

Supporting students, researchers, and industry engineers to make renewable-integrated grids a reality, this book is a holistic introduction to an exciting new approach in energy systems management.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sugli autori

Mohammadreza Daneshvar, PhD, is an Assistant Professor, founder and head of the Laboratory of Multi-Carrier Energy Networks Modernization at the Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran. Prior to that, he was a postdoctoral research fellow in the field of modern multi-energy networks at the Smart Energy Systems Lab of the University of Tabriz for two years. He obtained his MSc and PhD degrees in Electrical Power Engineering from the University of Tabriz, all with honors. He has (co)authored more than 50 technical journal and conference articles, 10 books, 28 book chapters, and 10 national and international research projects in the field. Dr. Daneshvar is a member of the Editorial Board of the Energy and Built Environment Journal and the Early Career Editorial Board of the Sustainable Cities and Society Journal. He also served as the guest editor for the Sustainable Cities and Society, and Sustainable Energy Technologies and Assessments journals. Moreover, he serves as an active reviewer with more than 120 top journals, and was ranked among the top 1% of reviewers in Engineering and Cross-Field based on Publons global reviewer database. His research interests include Smart Grids, Transactive Energy, Energy Management, Renewable Energy Sources, Integrated Multi-Energy Systems, Grid Modernization, Electrical Energy Storage Systems, Sustainable Cities and Society, Microgrids, Energy Hubs, Machine Learning and Deep Learning, Digital Twin, and Optimization Techniques and AI.

Dr. Behnam Mohammadi-Ivatloo, PhD, is a Professor of sector coupling in energy systems at LUT University, Lappeenranta, Finland. He has a mix of high-level experience in research, teaching, administration and voluntary jobs at the national and international levels. He was PI or CO-PI in more than 20 externally funded research projects including grants from EU Horiozn and Business Finland. He is a Senior Member of IEEE since 2017 and a Member of the Governing Board of Iran Energy Association since 2013, where he was elected as President in 2019. He is Editor of IEEE Transactions on Power Systems and IEEE Transactions of Transportation Electrifications. His main areas of interest are integrated energy systems, sector coupling, renewable energies, energy storage systems, microgrids, and smart grids.



Dr. Kazem Zare, PhD, SMIEEE received the B.Sc. and M.Sc. degrees in electrical engineering from University of Tabriz, Tabriz, Iran, in 2000 and 2003, respectively, and Ph.D. degree from Tarbiat Modares University, Tehran, Iran, in 2009. Currently, he is a Professor of the Faculty of Electrical and Computer Engineering, University of Tabriz. His research areas include distribution networks operation and planning, power system economics, microgrid and energy management.



Jamshid Aghaei is currently a Full Professor with the School of Engineering and Technology at Central Queensland University, Australia. His research interests include smart grids, renewable energy systems, electricity markets, and power system operation, optimization, and planning. He was a Guest Editor of the Special Section on “Industrial and Commercial Demand Response” of the IEEE Transactions on Industrial Informatics, in November 2018, and the Special Issue on “Demand Side Management and Market Design for Renewable Energy Support and Integration” of the IET Renewable Power Generation, in April 2019. He is an Associate Editor of the IEEE Transactions on Smart Grid, IEEE Systems Journal, IEEE Transactions on Cloud Computing, IEEE Open Access Journal of Power and Energy, and IET Renewable Power Generation, and a Subject Editor of IET Generation Transmission and Distribution.

Dalla quarta di copertina

Physics-Aware Machine Learning for Integrated Energy Systems Management guides the reader through this state-of-the-art approach to computational methods, from data input and training to application opportunities in integrated energy systems. This book begins by establishing the principles, design, and needs of integrated energy systems in the modern sustainable grid, before moving into assessing aspects such as sustainability, energy storage, and physical-economic models. Detailed, step-by-step procedures for utilizing a variety of physics-aware machine learning models are provided, including reinforcement learning, feature learning, and neural networks.

Supporting students, researchers, and industry engineers to make renewable-integrated grids a reality, Physics-Aware Machine Learning for Integrated Energy Systems Management is a holistic introduction to an exciting new approach in energy systems management.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 5,50 per la spedizione da Italia a U.S.A.

Destinazione, tempi e costi

Risultati della ricerca per Physics-Aware Machine Learning for Integrated Energy...

Foto dell'editore

Daneshvar, Mohammadreza
Editore: Elsevier, 2025
ISBN 10: 0443329842 ISBN 13: 9780443329845
Nuovo Brossura
Print on Demand

Da: Brook Bookstore On Demand, Napoli, NA, Italia

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: new. Questo è un articolo print on demand. Codice articolo IVNAF7KGKW

Contatta il venditore

Compra nuovo

EUR 153,91
Convertire valuta
Spese di spedizione: EUR 5,50
Da: Italia a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Elsevier, 2025
ISBN 10: 0443329842 ISBN 13: 9780443329845
Nuovo Brossura

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 410589019

Contatta il venditore

Compra nuovo

EUR 170,81
Convertire valuta
Spese di spedizione: EUR 7,44
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Elsevier, 2025
ISBN 10: 0443329842 ISBN 13: 9780443329845
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26403613828

Contatta il venditore

Compra nuovo

EUR 177,70
Convertire valuta
Spese di spedizione: EUR 3,42
In U.S.A.
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Daneshvar, Mohammadreza (Editor)/ Mohammadi-ivatloo, Behnam (Editor)/ Zare, Kazem (Editor)/ Aghaei, Jamshid (Editor)
Editore: Elsevier Science Ltd, 2025
ISBN 10: 0443329842 ISBN 13: 9780443329845
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 300 pages. 9.00x6.00x9.02 inches. In Stock. Codice articolo __0443329842

Contatta il venditore

Compra nuovo

EUR 168,64
Convertire valuta
Spese di spedizione: EUR 14,31
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Elsevier, 2025
ISBN 10: 0443329842 ISBN 13: 9780443329845
Nuovo Brossura

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 18403613838

Contatta il venditore

Compra nuovo

EUR 190,60
Convertire valuta
Spese di spedizione: EUR 9,95
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Mohammadreza Daneshvar
ISBN 10: 0443329842 ISBN 13: 9780443329845
Nuovo Paperback

Da: CitiRetail, Stevenage, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. Physics-Aware Machine Learning for Integrated Energy Systems Management, a new release in the Advances in Intelligent Energy Systems series, guides the reader through this state-of-the-art approach to computational methods, from data input and training to application opportunities in integrated energy systems. The book begins by establishing the principles, design, and needs of integrated energy systems in the modern sustainable grid before moving into assessing aspects such as sustainability, energy storage, and physical-economic models. Detailed, step-by-step procedures for utilizing a variety of physics-aware machine learning models are provided, including reinforcement learning, feature learning, and neural networks.Supporting students, researchers, and industry engineers to make renewable-integrated grids a reality, this book is a holistic introduction to an exciting new approach in energy systems management. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9780443329845

Contatta il venditore

Compra nuovo

EUR 166,86
Convertire valuta
Spese di spedizione: EUR 42,37
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello