A thorough review of the most current regression methods in time series analysis
Regression methods have been an integral part of time series analysis for over a century. Recently, new developments have made major strides in such areas as non-continuous data where a linear model is not appropriate. This book introduces the reader to newer developments and more diverse regression models and methods for time series analysis.
Accessible to anyone who is familiar with the basic modern concepts of statistical inference, Regression Models for Time Series Analysis provides a much-needed examination of recent statistical developments. Primary among them is the important class of models known as generalized linear models (GLM) which provides, under some conditions, a unified regression theory suitable for continuous, categorical, and count data.
The authors extend GLM methodology systematically to time series where the primary and covariate data are both random and stochastically dependent. They introduce readers to various regression models developed during the last thirty years or so and summarize classical and more recent results concerning state space models. To conclude, they present a Bayesian approach to prediction and interpolation in spatial data adapted to time series that may be short and/or observed irregularly. Real data applications and further results are presented throughout by means of chapter problems and complements.
Notably, the book covers:
* Important recent developments in Kalman filtering, dynamic GLMs, and state-space modeling
* Associated computational issues such as Markov chain, Monte Carlo, and the EM-algorithm
* Prediction and interpolation
* Stationary processes
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
BENJAMIN KEDEM, PhD, is Professor of Mathematics at the University of Maryland.
KONSTANTINOS FOKIANOS, PhD, is Assistant Professor in the Department of Mathematics and Statistics at the University of Cyprus.
A thorough review of the most current regression methods in time series analysis
Regression methods have been an integral part of time series analysis for over a century. Recently, new developments have made major strides in such areas as non-continuous data where a linear model is not appropriate. This book introduces the reader to newer developments and more diverse regression models and methods for time series analysis.
Accessible to anyone who is familiar with the basic modern concepts of statistical inference, Regression Models for Time Series Analysis provides a much-needed examination of recent statistical developments. Primary among them is the important class of models known as generalized linear models (GLM) which provides, under some conditions, a unified regression theory suitable for continuous, categorical, and count data.
The authors extend GLM methodology systematically to time series where the primary and covariate data are both random and stochastically dependent. They introduce readers to various regression models developed during the last thirty years or so and summarize classical and more recent results concerning state space models. To conclude, they present a Bayesian approach to prediction and interpolation in spatial data adapted to time series that may be short and/or observed irregularly. Real data applications and further results are presented throughout by means of chapter problems and complements.
Notably, the book covers:
* Important recent developments in Kalman filtering, dynamic GLMs, and state-space modeling
* Associated computational issues such as Markov chain, Monte Carlo, and the EM-algorithm
* Prediction and interpolation
* Stationary processes
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,07 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 6,72 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Grey Matter Books, Hadley, MA, U.S.A.
Hardcover. Condizione: Fine. Minty copy, bright glossy pictorial boards, clean and unmarked, tight binding. Codice articolo 003402
Quantità: 1 disponibili
Da: HPB-Red, Dallas, TX, U.S.A.
Hardcover. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_387942093
Quantità: 1 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
HRD. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L1-9780471363552
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 626772-n
Quantità: 1 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
HRD. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L1-9780471363552
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780471363552_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 626772-n
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 626772
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 626772
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. BENJAMIN KEDEM, PhD, is Professor of Mathematics at the University of Maryland.KONSTANTINOS FOKIANOS, PhD, is Assistant Professor in the Department of Mathematics and Statistics at the University of Cyprus.A thorough review of the most current regressio. Codice articolo 446916161
Quantità: Più di 20 disponibili