A comprehensive presentation of control theory for the SPC community
Quality control has become a major concern in today's competitive industrial environment, and industrial engineers are constantly seeking to make process adjustments that will optimize production efficiency and improve product quality. Statistical Process Adjustment for Quality Control fills the need for a comprehensive presentation of control theory at the elementary level, focusing on statistical methods used in process adjustment (Engineering Process Control Methods or EPC) and their relation to the classical methods of process monitoring, particularly those using SPC control charts. The author presents the severe effects of autocorrelated data on control chart performance and advocates the use of active adjustment methods for improving the quality of products and processes. He uses a detailed explanation of Deming's funnel experiment to illustrate the need for process adjustment when there are process dynamics, and presents an in-depth description of ARIMA models and Transfer Function models from a statistical point of view. He offers several adjustment strategies, including Minimum Variance Controllers, PID controllers, EWMA controllers, deadband policies, and constrained variance controllers. The book also offers integration strategies for SPC and EPC methods, discusses multivariate ARMAX models used for multivariate adjustment, and provides readers with a brief introduction to frequency domain and state-space methods.
Statistical Process Adjustment for Quality Control is a timely resource for students, industrial engineers, and applied statisticians in both academic and industrial settings. Unique features include:
* A strong focus on quality control of products and processes
* Broad coverage of SPC, adjustments, and time series under one cover
* Abundant examples using both real process data and simulations
* Detailed explanations on how to use SAS and MATLAB on an accompanying ftp site
* Coverage of spreadsheet simulation and optimization models in Microsoft(r) Excel
* Numerous chapter problems and detailed bibliography of relevant literature for further reading
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
ENRIQUE del CASTILLO is an Associate Professor in the Department of Industrial Manufacturing and Engineering at the Pennsylvania State University.
A comprehensive presentation of control theory for the SPC community
Quality control has become a major concern in today's competitive industrial environment, and industrial engineers are constantly seeking to make process adjustments that will optimize production efficiency and improve product quality. Statistical Process Adjustment for Quality Control fills the need for a comprehensive presentation of control theory at the elementary level, focusing on statistical methods used in process adjustment (Engineering Process Control Methods or EPC) and their relation to the classical methods of process monitoring, particularly those using SPC control charts. The author presents the severe effects of autocorrelated data on control chart performance and advocates the use of active adjustment methods for improving the quality of products and processes. He uses a detailed explanation of Deming's funnel experiment to illustrate the need for process adjustment when there are process dynamics, and presents an in-depth description of ARIMA models and Transfer Function models from a statistical point of view. He offers several adjustment strategies, including Minimum Variance Controllers, PID controllers, EWMA controllers, deadband policies, and constrained variance controllers. The book also offers integration strategies for SPC and EPC methods, discusses multivariate ARMAX models used for multivariate adjustment, and provides readers with a brief introduction to frequency domain and state-space methods.
Statistical Process Adjustment for Quality Control is a timely resource for students, industrial engineers, and applied statisticians in both academic and industrial settings. Unique features include:
* A strong focus on quality control of products and processes
* Broad coverage of SPC, adjustments, and time series under one cover
* Abundant examples using both real process data and simulations
* Detailed explanations on how to use SAS and MATLAB on an accompanying ftp site
* Coverage of spreadsheet simulation and optimization models in Microsoft(r) Excel
* Numerous chapter problems and detailed bibliography of relevant literature for further reading
A comprehensive presentation of control theory for the SPC community
Quality control has become a major concern in today's competitive industrial environment, and industrial engineers are constantly seeking to make process adjustments that will optimize production efficiency and improve product quality. Statistical Process Adjustment for Quality Control fills the need for a comprehensive presentation of control theory at the elementary level, focusing on statistical methods used in process adjustment (Engineering Process Control Methods or EPC) and their relation to the classical methods of process monitoring, particularly those using SPC control charts. The author presents the severe effects of autocorrelated data on control chart performance and advocates the use of active adjustment methods for improving the quality of products and processes. He uses a detailed explanation of Deming's funnel experiment to illustrate the need for process adjustment when there are process dynamics, and presents an in-depth description of ARIMA models and Transfer Function models from a statistical point of view. He offers several adjustment strategies, including Minimum Variance Controllers, PID controllers, EWMA controllers, deadband policies, and constrained variance controllers. The book also offers integration strategies for SPC and EPC methods, discusses multivariate ARMAX models used for multivariate adjustment, and provides readers with a brief introduction to frequency domain and state-space methods.
Statistical Process Adjustment for Quality Control is a timely resource for students, industrial engineers, and applied statisticians in both academic and industrial settings. Unique features include:
* A strong focus on quality control of products and processes
* Broad coverage of SPC, adjustments, and time series under one cover
* Abundant examples using both real process data and simulations
* Detailed explanations on how to use SAS and MATLAB on an accompanying ftp site
* Coverage of spreadsheet simulation and optimization models in Microsoft(r) Excel
* Numerous chapter problems and detailed bibliography of relevant literature for further reading
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,98 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 43,86 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Better World Books, Mishawaka, IN, U.S.A.
Condizione: Good. 1st Edition. Used book that is in clean, average condition without any missing pages. Codice articolo 51557172-6
Quantità: 1 disponibili
Da: HPB-Red, Dallas, TX, U.S.A.
Hardcover. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_379805194
Quantità: 1 disponibili
Da: thebookforest.com, San Rafael, CA, U.S.A.
hardcover. Condizione: New. Well packaged and promptly shipped from California. Partnered with Friends of the Library since 2010. Codice articolo 1LAGBP001XRL
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. ENRIQUE del CASTILLO is an Associate Professor in the Department of Industrial Manufacturing and Engineering at the Pennsylvania State University.A comprehensive presentation of control theory for the SPC communityQuality control has become a major conc. Codice articolo 446916552
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo FW-9780471435747
Quantità: 15 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 85070-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 85070-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 85070
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 85070
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Neuware - A comprehensive presentation of control theory for the SPC communityQuality control has become a major concern in today's competitive industrial environment, and industrial engineers are constantly seeking to make process adjustments that will optimize production efficiency and improve product quality. Statistical Process Adjustment for Quality Control fills the need for a comprehensive presentation of control theory at the elementary level, focusing on statistical methods used in process adjustment (Engineering Process Control Methods or EPC) and their relation to the classical methods of process monitoring, particularly those using SPC control charts. The author presents the severe effects of autocorrelated data on control chart performance and advocates the use of active adjustment methods for improving the quality of products and processes. He uses a detailed explanation of Deming's funnel experiment to illustrate the need for process adjustment when there are process dynamics, and presents an in-depth description of ARIMA models and Transfer Function models from a statistical point of view. He offers several adjustment strategies, including Minimum Variance Controllers, PID controllers, EWMA controllers, deadband policies, and constrained variance controllers. The book also offers integration strategies for SPC and EPC methods, discusses multivariate ARMAX models used for multivariate adjustment, and provides readers with a brief introduction to frequency domain and state-space methods.Statistical Process Adjustment for Quality Control is a timely resource for students, industrial engineers, and applied statisticians in both academic and industrial settings. Unique features include:\* A strong focus on quality control of products and processes\* Broad coverage of SPC, adjustments, and time series under one cover\* Abundant examples using both real process data and simulations\* Detailed explanations on how to use SAS and MATLAB on an accompanying ftp site\* Coverage of spreadsheet simulation and optimization models in Microsoft(r) Excel\* Numerous chapter problems and detailed bibliography of relevant literature for further reading. Codice articolo 9780471435747
Quantità: 2 disponibili