# Topological Graph Theory

## Gross, Jonathan L.; Tucker, Thomas W.

Valutazione media 4,12
( su 8 valutazioni fornite da GoodReads )

Iintroductory treatment emphasizes graph imbedding but also covers connections between topological graph theory and other areas of mathematics. Authors explore the role of voltage graphs in the derivation of genus formulas, explain the Ringel-Youngs theorem, and examine the genus of a group, including imbeddings of Cayley graphs. Many figures. 1987 edition.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti:

1. Introduction 1.1 Representation of Graphs 1.1.1 Drawings 1.1.2 Incidence Matrix 1.1.3 Euler's theorem on valence sum 1.1.4 Adjacency Matrix 1.1.5 Directions 1.1.6 Graphs, maps, isomorphisms 1.1.7 Automorphisms 1.1.8 Exercises 1.2 Some important classes of graphs 1.2.1 Walks, paths, and cycles; connectedness 1.2.2 Trees 1.2.3 Complete graphs 1.2.4 Cayley graphs 1.2.5 Bipartite graphs 1.2.6 Bouquets of Circles 1.2.7 Exercises 1.3 New graphs from old 1.3.1 Subgraphs 1.3.2 Topological representations, subdivisions, graph homeomorphisms 1.3.3 Cartesian products 1.3.4 Edge-complements 1.3.5 Suspensions 1.3.6 Amalgamations 1.3.7 Regular quotients 1.3.8 Regular coverings 1.3.9 Exercises 1.4 Surfaces and imbeddings 1.4.1 Orientable surfaces 1.4.2 Nonorientable surfaces 1.4.3 Imbeddings 1.4.4 Euler's equation for the sphere 1.4.5 Kuratowski's graphs 1.4.6 Genus of surfaces and graphs 1.4.7 The torus 1.4.8 Duality 1.4.9 Exercises 1.5 More graph-theoretic background 1.5.1 Traversability 1.5.2 Factors 1.5.3 Distance, neighborhoods 1.5.4 Graphs colorings and map colorings 1.5.5 Edge operations 1.5.6 Algorithms 1.5.7 Connectivity 1.5.8 Exercises 1.6 Planarity 1.6.1 A nearly complete sketch of the proof 1.6.2 Connectivity and region boundaries 1.6.3 Edge contraction and connectivity 1.6.4 Planarity theorems for 3-connected graphs 1.6.5 Graphs that are not 3-connected 1.6.6 Algorithms 1.6.7 Kuratowski graphs for higher genus 1.6.8 Other planarity criteria 1.6.9 Exercises 2. Voltage Graphs and Covering Spaces 2.1 Ordinary voltages 2.1.1 Drawings of voltage graphs 2.1.2 Fibers and the natural projection 2.1.3 The net voltage on a walk 2.1.4 Unique walk lifting 2.1.5 Preimages of cycles 2.1.6 Exercises 2.2 Which graphs are derivable with ordinary voltages? 2.2.1 The natural action of the voltage group 2.2.2 Fixed-point free automorphisms 2.2.3 Cayley graphs revisited 2.2.4 Automorphism groups of graphs 2.2.5 Exercises 2.3 Irregular covering graphs 2.3.1 Schreier graphs 2.3.2 Relative voltages 2.3.3 Combinatorial coverings 2.3.4 Most regular graphs are Schreier graphs 2.3.5 Exercises 2.4 Permutation voltage graphs 2.4.1 Constructing covering spaces with permutations 2.4.2 Preimages of walks and cycles 2.4.3 Which graphs are derivable by permutation voltages? 2.4.4 Identifying relative voltages with permutation voltages 2.4.5 Exercises 2.5 Subgroups of the voltage group 2.5.1 The fundamental semigroup of closed walks 2.5.2 Counting components of ordinary derived graphs 2.5.3 The fundamental group of a graph 2.5.4 Contracting derived graphs onto Cayley graphs 2.5.5 Exercises 3. Surfaces and Graph Imbeddings 3.1 Surfaces and simplicial complexes 3.1.1 Geometric simplicial complexes 3.1.2 Abstract simplicial complexes 3.1.3 Triangulations 3.1.4 Cellular imbeddings 3.1.5 Representing surfaces by polygons 3.1.6 Pseudosurfaces and block designs 3.1.7 Orientations 3.1.8 Stars, links, and local properties 3.1.9 Exercises 3.2 Band Decompositions and graph imbeddings 3.2.1 Band decomposition for surfaces 3.2.2 Orientability 3.2.3 Rotation systems 3.2.4 Pure rotation systems and orientable surfaces 3.2.5 Drawings of rotation systems 3.2.6 Tracing faces 3.2.7 Duality 3.2.8 Which 2-complexes are planar? 3.2.9 Exercises 3.3 The classification of surfaces 3.3.1 Euler characteristic relative to an imbedded graph 3.3.2 Invariance of Euler characteristic 3.3.3 Edge-deletion surgery and edge sliding 3.3.4 Completeness of the set of orientable models 3.3.5 Completeness of the set of nonorientable models 3.3.6 Exercises 3.4 The imbedding distribution of a graph 3.4.1 The absence of gaps in the genus range 3.4.2 The absence of gaps in the crosscap range 3.4.3 A genus-related upper bound on the crosscap number 3.4.4 The genus and crosscap number of the complete graph K subscript 7 3.4.5 Some graphs of crosscap number 1 but arbitrarily large genus 3.4.6 Maximum genus 3.4.7 Distribution of genus and face sizes 3.4.8 Exercises 3.5 Algorithms and formulas for minimum imbeddings 3.5.1 Rotation-system algorithms 3.5.2 Genus of an amalgamation 3.5.3 Crosscap number of an amalgamation 3.5.4 The White-Pisanski imbedding of a cartesian product 3.5.5 Genus and crosscap number of cartesian products 3.5.6 Exercises 4. Imbedded voltage graphs and current graphs 4.1 The derived imbedding 4.1.1 Lifting rotation systems 4.1.2 Lifting faces 4.1.3 The Kirchhoff Voltage Law 4.1.4 Imbedded permutation voltage graphs 4.1.5 Orientability 4.1.6 An orientability test for derived surfaces 4.1.7 Exercises 4.2 Branched coverings of surfaces 4.2.1 Riemann surfaces 4.2.2 Extension of the natural covering projection 4.2.3 Which branch coverings come from voltage graphs? 4.2.4 The Riemann-Hurwitz equation 4.2.5 Alexander's theorem 4.2.6 Exercises 4.3 Regular branched coverings and group actions 4.3.1 Groups acting on surfaces 4.3.2 Graph automorphisms and rotation systems 4.3.3 Regular branched coverings and ordinary imbedded voltage graphs 4.3.4 Which regular branched coverings come from voltage graphs? 4.3.5 Applications to group actions on the surface S subscript 2 4.3.6 Exercises 4.4 Current graphs 4.4.1 Ringel's generating rows for Heffter's schemes 4.4.2 Gustin's combinatorial current graphs 4.4.3 Orientable topological current graphs 4.4.4 Faces of the derived graph 4.4.5 Nonorientable current graphs 4.4.6 Exercises 4.5 Voltage-current duality 4.5.1 Dual directions 4.5.2 The voltage graph dual to a current graph 4.5.3 The dual derived graph 4.5.4 The genus of the complete bipartite graph K (subscript m, n) 4.5.5 Exercises 5. Map colorings 5.1 The Heawood upper bound 5.1.1 Average valence 5.1.2 Chromatically critical graphs 5.1.3 The five-color theorem 5.1.4 The complete-graph imbedding problem 5.1.5 Triangulations of surfaces by complete graphs 5.1.6 Exercises 5.2 Quotients of complete-graph imbeddings and some variations 5.2.1 A base imbedding for orientable case 7 5.2.2 Using a coil to assign voltages 5.2.3 A current-graph perspective on case 7 5.2.4 Orientable case 4: doubling 1-factors 5.2.5 About orientable cases 3 and 0 5.2.6 Exercises 5.3 The regular nonorientable cases 5.3.1 Some additional tactics 5.3.2 Nonorientable current graphs 5.3.3 Nonorientable cases 3 and 7 5.3.4 Nonorientable case 0 5.3.5 Nonorientable case 4 5.3.6 About nonorientable cases 1, 6, 9, and 10 5.3.7 Exercises 5.4 Additional adjacencis for irregular cases 5.4.1 Orientable case 5 5.4.2 Orie 6.1.1 Recovering a Cayley graph from any of its quotients 6.1.2 A lower bound for the genus of most abelian groups 6.1.3 Constructing quadrilateral imbeddings for most abelian groups 6.1.4 Exercises 6.2 The symmetric genus 6.2.1 Rotation systems and symmetry 6.2.2 Reflections 6.2.3 Quotient group actions on quotient surfaces 6.2.4 Alternative Cayley graphs revisited 6.2.5 Group actions and imbeddings 6.2.6 Are genus and symmetric genus the same? 6.2.7 Euclidean space groups and the torus 6.2.8 Triangle groups 6.2.9 Exercises 6.3 Groups of small symmetric genus 6.3.1 The Riemann-Hurwitz equation revisited 6.3.2 Strong symmetric genus 0 6.3.3 Symmetric genus 1 6.3.4 The geometry and algebra of groups of symmetric genus 1 6.3.5 Hurwitz's theorem 6.3.6 Exercises 6.4 Groups of small genus 6.4.1 An example 6.4.2 A face-size inequality 6.4.3 Statement of main theorem 6.4.4 Proof of theorem 6.4.2: valence d = 4 6.4.5 Proof of theorem 6.4.2: valence d = 3 6.4.6 Remarks about Theorem 6.4.2 6.4.7 Exercises References Bibliography Supplementary Bibliography Table of Notations Subject Index

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

## 1.Topological Graph Theory Format: Trade Paper

Editore: Dover Publishers
ISBN 10: 0486417417 ISBN 13: 9780486417417
Nuovi Quantità: > 20
Da
INDOO
(Avenel, NJ, U.S.A.)
Valutazione libreria

Descrizione libro Dover Publishers. Condizione libro: New. Brand New. Codice libro della libreria 0486417417

Compra nuovo
EUR 8,87
Convertire valuta
Spese di spedizione: EUR 3,31
In U.S.A.
Destinazione, tempi e costi

## 2.Topological Graph Theory (Paperback)

Editore: Dover Publications Inc., United States (2012)
ISBN 10: 0486417417 ISBN 13: 9780486417417
Nuovi Paperback Quantità: 1
Da
The Book Depository US
(London, Regno Unito)
Valutazione libreria

Descrizione libro Dover Publications Inc., United States, 2012. Paperback. Condizione libro: New. Reprint. 213 x 137 mm. Language: English . Brand New Book. Clear, comprehensive introduction emphasizes graph imbedding but also covers thoroughly the connections between topological graph theory and other areas of mathematics. Discussion of imbeddings into surfaces is combined with a complete proof of the classification of closed surfaces. Authors explore the role of voltage graphs in the derivation of genus formulas, explain the Ringel-Youngs theorem -- a proof that revolutionized the field of graph theory -- and examine the genus of a group, including imbeddings of Cayley graphs. 1987 edition. Many figures. Codice libro della libreria AAC9780486417417

Compra nuovo
EUR 12,87
Convertire valuta
Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

## 3.Topological Graph Theory

Editore: Dover Publications Inc. (2003)
ISBN 10: 0486417417 ISBN 13: 9780486417417
Nuovi Quantità: 4
Da
PBShop
(Secaucus, NJ, U.S.A.)
Valutazione libreria

Descrizione libro Dover Publications Inc., 2003. PAP. Condizione libro: New. New Book.Shipped from US within 10 to 14 business days. Established seller since 2000. Codice libro della libreria IB-9780486417417

Compra nuovo
EUR 9,73
Convertire valuta
Spese di spedizione: EUR 3,78
In U.S.A.
Destinazione, tempi e costi

## 4.Topological Graph Theory (Paperback)

Editore: Dover Publications Inc., United States (2012)
ISBN 10: 0486417417 ISBN 13: 9780486417417
Nuovi Paperback Quantità: 1
Da
The Book Depository
(London, Regno Unito)
Valutazione libreria

Descrizione libro Dover Publications Inc., United States, 2012. Paperback. Condizione libro: New. Reprint. 213 x 137 mm. Language: English . Brand New Book. Clear, comprehensive introduction emphasizes graph imbedding but also covers thoroughly the connections between topological graph theory and other areas of mathematics. Discussion of imbeddings into surfaces is combined with a complete proof of the classification of closed surfaces. Authors explore the role of voltage graphs in the derivation of genus formulas, explain the Ringel-Youngs theorem -- a proof that revolutionized the field of graph theory -- and examine the genus of a group, including imbeddings of Cayley graphs. 1987 edition. Many figures. Codice libro della libreria AAC9780486417417

Compra nuovo
EUR 13,78
Convertire valuta
Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

## 5.Topological Graph Theory (Dover Books on Mathematics)

Editore: Dover Publications
ISBN 10: 0486417417 ISBN 13: 9780486417417
Nuovi PAPERBACK Quantità: 4
Da
Movie Mars
(Indian Trail, NC, U.S.A.)
Valutazione libreria

Descrizione libro Dover Publications. PAPERBACK. Condizione libro: New. 0486417417 Brand New Book. Ships from the United States. 30 Day Satisfaction Guarantee!. Codice libro della libreria 16149169

Compra nuovo
EUR 10,41
Convertire valuta
Spese di spedizione: EUR 3,78
In U.S.A.
Destinazione, tempi e costi

## 6.Topological Graph Theory (Dover Books on Mathematics)

Editore: Dover Publications (2012)
ISBN 10: 0486417417 ISBN 13: 9780486417417
Nuovi Brossura Quantità: 1
Da
Book Deals
(Lewiston, NY, U.S.A.)
Valutazione libreria

Descrizione libro Dover Publications, 2012. Condizione libro: New. Brand New, Unread Copy in Perfect Condition. A+ Customer Service! Summary: 1. Introduction 1.1 Representation of Graphs 1.1.1 Drawings 1.1.2 Incidence Matrix 1.1.3 Euler's theorem on valence sum 1.1.4 Adjacency Matrix 1.1.5 Directions 1.1.6 Graphs, maps, isomorphisms 1.1.7 Automorphisms 1.1.8 Exercises 1.2 Some important classes of graphs 1.2.1 Walks, paths, and cycles; connectedness 1.2.2 Trees 1.2.3 Complete graphs 1.2.4 Cayley graphs 1.2.5 Bipartite graphs 1.2.6 Bouquets of Circles 1.2.7 Exercises 1.3 New graphs from old 1.3.1 Subgraphs 1.3.2 Topological representations, subdivisions, graph homeomorphisms 1.3.3 Cartesian products 1.3.4 Edge-complements 1.3.5 Suspensions 1.3.6 Amalgamations 1.3.7 Regular quotients 1.3.8 Regular coverings 1.3.9 Exercises 1.4 Surfaces and imbeddings 1.4.1 Orientable surfaces 1.4.2 Nonorientable surfaces 1.4.3 Imbeddings 1.4.4 Euler's equation for the sphere 1.4.5 Kuratowski's graphs 1.4.6 Genus of surfaces and graphs 1.4.7 The torus 1.4.8 Duality 1.4.9 Exercises 1.5 More graph-theoretic background 1.5.1 Traversability 1.5.2 Factors 1.5.3 Distance, neighborhoods 1.5.4 Graphs colorings and map colorings 1.5.5 Edge operations 1.5.6 Algorithms 1.5.7 Connectivity 1.5.8 Exercises 1.6 Planarity 1.6.1 A nearly complete sketch of the proof 1.6.2 Connectivity and region boundaries 1.6.3 Edge contraction and connectivity 1.6.4 Planarity theorems for 3-connected graphs 1.6.5 Graphs that are not 3-connected 1.6.6 Algorithms 1.6.7 Kuratowski graphs for higher genus 1.6.8 Other planarity criteria 1.6.9 Exercises 2. Voltage Graphs and Covering Spaces 2.1 Ordinary voltages 2.1.1 Drawings of voltage graphs 2.1.2 Fibers and the natural projection 2.1.3 The net voltage on a walk 2.1.4 Unique walk lifting 2.1.5 Preimages of cycles 2.1.6 Exercises 2.2 Which graphs are derivable with ordinary voltages? 2.2.1 The natural action of the voltage group 2.2.2 Fixed-point free automorphisms 2.2.3 Cayley graphs revisited 2.2.4 Automorphism groups of graphs 2.2.5 Exercises 2.3 Irregular covering graphs 2.3.1 Schreier graphs 2.3.2 Relative voltages 2.3.3 Combinatorial coverings 2.3.4 Most regular graphs are Schreier graphs 2.3.5 Exercises 2.4 Permutation voltage graphs 2.4.1 Constructing covering spaces with permutations 2.4.2 Preimages of walks and cycles 2.4.3 Which graphs are derivable by permutation voltages? 2.4.4 Identifying relative voltages with permutation voltages 2.4.5 Exercises 2.5 Subgroups of the voltage group 2.5.1 The fundamental semigroup of closed walks 2.5.2 Counting components of ordinary derived graphs 2.5.3 The fundamental group of a graph 2.5.4 Contracting derived graphs onto Cayley graphs 2.5.5 Exercises 3. Surfaces and Graph Imbeddings 3.1 Surfaces and simplicial complexes 3.1.1 Geometric simplicial complexes 3.1.2 Abstract simplicial complexes 3.1.3 Triangulations 3.1.4 Cellular imbeddings 3.1.5 Representing surfaces by polygons 3.1.6 Pseudosurfaces and block designs 3.1.7 Orientations 3.1.8 Stars, links, and local properties 3.1.9 Exercises 3.2 Band Decompositions and graph imbeddings 3.2.1 Band decomposition for surfaces 3.2.2 Orientability 3.2.3 Rotation systems 3.2.4 Pure rotation systems and orientable surfaces 3.2.5 Drawings of rotation systems 3.2.6 Tracing faces 3.2.7 Duality 3.2.8 Which 2-complexes are planar? 3.2.9 Exercises 3.3 The classification of surfaces 3.3.1 Euler characteristic relative to an imbedded graph 3.3.2 Invariance of Euler characteristic 3.3.3 Edge-deletion surgery and edge sliding 3.3.4 Completeness of the set of orientable models 3.3.5 Completeness of the set of nonorientable models 3.3.6. Codice libro della libreria ABE_book_new_0486417417

Compra nuovo
EUR 17,05
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

## 7.Topological Graph Theory (Dover Books on Mathematics)

Editore: Dover Publications
ISBN 10: 0486417417 ISBN 13: 9780486417417
Nuovi PAPERBACK Quantità: 1
Da
Qwestbooks COM LLC
(Bensalem, PA, U.S.A.)
Valutazione libreria

Descrizione libro Dover Publications. PAPERBACK. Condizione libro: New. 0486417417. Codice libro della libreria Z0486417417ZN

Compra nuovo
EUR 17,07
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

## 8.Topological Graph Theory (Paperback)

ISBN 10: 0486417417 ISBN 13: 9780486417417
Nuovi Paperback Quantità: 1
Da
Grand Eagle Retail
(Wilmington, DE, U.S.A.)
Valutazione libreria

Descrizione libro Paperback. Condizione libro: New. 140mm x 210mm x 19mm. Paperback. Iintroductory treatment emphasizes graph imbedding but also covers connections between topological graph theory and other areas of mathematics. Authors explore the role of voltage graphs i.Shipping may be from multiple locations in the US or from the UK, depending on stock availability. 361 pages. 0.386. Codice libro della libreria 9780486417417

Compra nuovo
EUR 17,43
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

## 9.Topological Graph Theory

Editore: Dover Publications Inc.
ISBN 10: 0486417417 ISBN 13: 9780486417417
Nuovi Paperback Quantità: 5
Da
THE SAINT BOOKSTORE
(Southport, Regno Unito)
Valutazione libreria

Descrizione libro Dover Publications Inc. Paperback. Condizione libro: new. BRAND NEW, Topological Graph Theory, Jonathan L. Gross, Thomas W. Tucker. Codice libro della libreria B9780486417417

Compra nuovo
EUR 10,41
Convertire valuta
Spese di spedizione: EUR 7,07
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

## 10.Topological Graph Theory (Dover Books on Mathematics)

Editore: Dover Publications (2012)
ISBN 10: 0486417417 ISBN 13: 9780486417417
Nuovi Paperback Quantità: 1
Da
Irish Booksellers
(Rumford, ME, U.S.A.)
Valutazione libreria

Descrizione libro Dover Publications, 2012. Paperback. Condizione libro: New. book. Codice libro della libreria 0486417417

Compra nuovo
EUR 18,20
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi