Articoli correlati a Generalized Convexity, Generalized Monotonicity: Recent...

Generalized Convexity, Generalized Monotonicity: Recent Results: 27 - Rilegato

 
9780792350880: Generalized Convexity, Generalized Monotonicity: Recent Results: 27

Sinossi

A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo­ metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man­ agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob­ lems.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

Preface. Part I: Generalized Convexity. 1. Are Generalized Derivatives Useful for Generalized Convex Functions? J.-P. Penot. 2. Stochastic Programs with Chance Constraints: Generalized Convexity and Approximation Issues; R.J.-B. Wets. 3. Error Bounds for Convex Inequality Systems; A.S. Lewis, Jong-Shi Pang. 4. Applying Generalised Convexity Notions to Jets; A. Eberhard, et al. 5. Quasiconvexity via Two Step Functions; A.M. Rubinov, B.M. Glover. 6. On Limiting Fréchet epsilon-Subdifferentials; A. Jourani, M. Théra. 7. Convexity Space with Respect to a Given Set; L. Blaga, L. Lupsa. 8. A Convexity Condition for the Nonexistence of Some Antiproximinal Sets in the Space of Integrable Functions; A.-M. Precupanu. 9. Characterizations of rho-Convex Functions; M. Castellani, M. Pappalardo. Part II: Generalized Monotonicity. 10. Characterizations of Generalized Convexity and Generalized Monotonicity, a Survey; J.-P. Crouzeix. 11. Quasimonotonicity and Pseudomonotonicity in Variational Inequalities and Equilibrium Problems; N. Hadjisavvas, S. Schaible. 12. On the Scalarization of Pseudoconcavity and Pseudomonotonicity Concepts for Vector Valued Functions; R. Cambini, S. Komlósi. 13. Variational Inequalities and Pseudomonotone Functions: Some Characterizations; R. John. Part III: Optimality Conditions and Duality. 14. Simplified Global Optimality Conditions in Generalized Conjugation Theory; F. Flores-Bazán, J.-E. Martínez-Legaz. 15. Duality in DC Programming; B. Lemaire, M.Volle. 16. Recent Developments in Second Order Necessary Optimality Conditions; A. Cambini, et al. 17. Higher Order Invexity and Duality in Mathematical Programming; B. Mond, J. Zhang. 18. Fenchel Duality in Generalized Fractional Programming; C.R. Bector, et al. Part IV: Vector Optimization. 19. The Notion of Invexity in Vector Optimization: Smooth and Nonsmooth Case; G. Giorgi, A. Guerraggio. 20. Quasiconcavity of Sets and Connectedness of the Efficient Frontier in Ordered Vector Spaces; E. Molho, A. Zaffaroni. 21. Multiobjective Quadratic Problem: Characterization of the Efficient Points; A. Beato-Moreno, et al. 22. Generalized Concavity for Bicriteria Functions; R. Cambini. 23. Generalized Concavity in Multiobjective Programming; A. Cambini, L. Martein.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781461333432: Generalized Convexity, Generalized Monotonicity: Recent Results: Recent Results: 27

Edizione in evidenza

ISBN 10:  1461333431 ISBN 13:  9781461333432
Casa editrice: Springer, 2011
Brossura

Risultati della ricerca per Generalized Convexity, Generalized Monotonicity: Recent...

Immagini fornite dal venditore

Crouzeix, Jean-Pierre|Martinez Legaz, Juan Enrique|Volle, Michel
Editore: Springer US, 1998
ISBN 10: 079235088X ISBN 13: 9780792350880
Nuovo Rilegato

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Gebunden. Condizione: New. A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconve. Codice articolo 458440054

Contatta il venditore

Compra nuovo

EUR 227,74
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Symposium On Generalized Convexity (5th : 1996 : Luminy, Marseille, France)
Editore: Springer, 1998
ISBN 10: 079235088X ISBN 13: 9780792350880
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9780792350880_new

Contatta il venditore

Compra nuovo

EUR 228,22
Convertire valuta
Spese di spedizione: EUR 10,42
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Symposium On Generalized Convexity (5th : 1996 : Luminy, Marseille, France)
Editore: Springer, 1998
ISBN 10: 079235088X ISBN 13: 9780792350880
Nuovo Rilegato

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Feb2416190182872

Contatta il venditore

Compra nuovo

EUR 202,01
Convertire valuta
Spese di spedizione: EUR 63,68
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jean-Pierre Crouzeix
Editore: Springer Us Aug 1998, 1998
ISBN 10: 079235088X ISBN 13: 9780792350880
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware - A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob lems. Codice articolo 9780792350880

Contatta il venditore

Compra nuovo

EUR 318,78
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello