Herb Caen, a popular columnist for the San Francisco Chronicle, recently quoted a Voice of America press release as saying that it was reorganizing in order to "eliminate duplication and redundancy. " This quote both states a goal of data compression and illustrates its common need: the removal of duplication (or redundancy) can provide a more efficient representation of data and the quoted phrase is itself a candidate for such surgery. Not only can the number of words in the quote be reduced without losing informa tion, but the statement would actually be enhanced by such compression since it will no longer exemplify the wrong that the policy is supposed to correct. Here compression can streamline the phrase and minimize the em barassment while improving the English style. Compression in general is intended to provide efficient representations of data while preserving the essential information contained in the data. This book is devoted to the theory and practice of signal compression, i. e. , data compression applied to signals such as speech, audio, images, and video signals (excluding other data types such as financial data or general purpose computer data). The emphasis is on the conversion of analog waveforms into efficient digital representations and on the compression of digital information into the fewest possible bits. Both operations should yield the highest possible reconstruction fidelity subject to constraints on the bit rate and implementation complexity.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 Introduction.- 1.1 Signals, Coding, and Compression.- 1.2 Optimality.- 1.3 How to Use this Book.- 1.4 Related Reading.- I Basic Tools.- 2 Random Processes and Linear Systems.- 2.1 Introduction.- 2.2 Probability.- 2.3 Random Variables and Vectors.- 2.4 Random Processes.- 2.5 Expectation.- 2.6 Linear Systems.- 2.7 Stationary and Ergodic Properties.- 2.8 Useful Processes.- 2.9 Problems.- 3 Sampling.- 3.1 Introduction.- 3.2 Periodic Sampling.- 3.3 Noise in Sampling.- 3.4 Practical Sampling Schemes.- 3.5 Sampling Jitter.- 3.6 Multidimensional Sampling.- 3.7 Problems.- 4 Linear Prediction.- 4.1 Introduction.- 4.2 Elementary Estimation Theory.- 4.3 Finite-Memory Linear Prediction.- 4.4 Forward and Backward Prediction.- 4.5 The Levinson-Durbin Algorithm.- 4.6 Linear Predictor Design from Empirical Data.- 4.7 Minimum Delay Property.- 4.8 Predictability and Determinism.- 4.9 Infinite Memory Linear Prediction.- 4.10 Simulation of Random Processes.- 4.11 Problems.- II Scalar Coding.- 5 Scalar Quantization I.- 5.1 Introduction.- 5.2 Structure of a Quantizer.- 5.3 Measuring Quantizer Performance.- 5.4 The Uniform Quantizer.- 5.5 Nonuniform Quantization and Companding.- 5.6 High Resolution: General Case.- 5.7 Problems.- 6 Scalar Quantization II.- 6.1 Introduction.- 6.2 Conditions for Optimality.- 6.3 High Resolution Optimal Companding.- 6.4 Quantizer Design Algorithms.- 6.5 Implementation.- 6.6 Problems.- 7 Predictive Quantization.- 7.1 Introduction.- 7.2 Difference Quantization.- 7.3 Closed-Loop Predictive Quantization.- 7.4 Delta Modulation.- 7.5 Problems.- 8 Bit Allocation and Transform Coding.- 8.1 Introduction.- 8.2 The Problem of Bit Allocation.- 8.3 Optimal Bit Allocation Results.- 8.4 Integer Constrained Allocation Techniques.- 8.5 Transform Coding.- 8.6 Karhunen-Loeve Transform.- 8.7 Performance Gain of Transform Coding.- 8.8 Other Transforms.- 8.9 Sub-band Coding.- 8.10 Problems.- 9 Entropy Coding.- 9.1 Introduction.- 9.2 Variable-Length Scalar Noiseless Coding.- 9.3 Prefix Codes.- 9.4 Huffman Coding.- 9.5 Vector Entropy Coding.- 9.6 Arithmetic Coding.- 9.7 Universal and Adaptive Entropy Coding.- 9.8 Ziv-Lempel Coding.- 9.9 Quantization and Entropy Coding.- 9.10 Problems.- III Vector Coding.- 10 Vector Quantization I.- 10.1 Introduction.- 10.2 Structural Properties and Characterization.- 10.3 Measuring Vector Quantizer Performance.- 10.4 Nearest Neighbor Quantizers.- 10.5 Lattice Vector Quantizers.- 10.6 High Resolution Distortion Approximations.- 10.7 Problems.- 11 Vector Quantization II.- 11.1 Introduction.- 11.2 Optimality Conditions for VQ.- 11.3 Vector Quantizer Design.- 11.4 Design Examples.- 11.5 Problems.- 12 Constrained Vector Quantization.- 12.1 Introduction.- 12.2 Complexity and Storage Limitations.- 12.3 Structurally Constrained VQ.- 12.4 Tree-Structured VQ.- 12.5 Classified VQ.- 12.6 Transform VQ.- 12.7 Product Code Techniques.- 12.8 Partitioned VQ.- 12.9 Mean-Removed VQ.- 12.10 Shape-Gain VQ.- 12.11 Multistage VQ.- 12.12 Constrained Storage VQ.- 12.13 Hierarchical and Multiresolution VQ.- 12.14 Nonlinear Interpolative VQ.- 12.15 Lattice Codebook VQ.- 12.16 Fast Nearest Neighbor Encoding.- 12.17 Problems.- 13 Predictive Vector Quantization.- 13.1 Introduction.- 13.2 Predictive Vector Quantization.- 13.3 Vector Linear Prediction.- 13.4 Predictor Design from Empirical Data.- 13.5 Nonlinear Vector Prediction.- 13.6 Design Examples.- 13.7 Problems.- 14 Finite-State Vector Quantization.- 14.1 Recursive Vector Quantizers.- 14.2 Finite-State Vector Quantizers.- 14.3 Labeled-States and Labeled-Transitions.- 14.4 Encoder/Decoder Design.- 14.5 Next-State Function Design.- 14.6 Design Examples.- 14.7 Problems.- 15 Tree and Trellis Encoding.- 15.1 Delayed Decision Encoder.- 15.2 Tree and Trellis Coding.- 15.3 Decoder Design.- 15.4 Predictive Trellis Encoders.- 15.5 Other Design Techniques.- 15.6 Problems.- 16 Adaptive Vector Quantization.- 16.1 Introduction.- 16.2 Mean Adaptation.- 16.3 Gain-Adaptive Vector Quantization.- 16.4 Switched Codebook Adaptation.- 16.5 Adaptive Bit Allocation.- 16.6 Address VQ.- 16.7 Progressive Code Vector Updating.- 16.8 Adaptive Codebook Generation.- 16.9 Vector Excitation Coding.- 16.10 Problems.- 17 Variable Rate Vector Quantization.- 17.1 Variable Rate Coding.- 17.2 Variable Dimension VQ.- 17.3 Alternative Approaches to Variable Rate VQ.- 17.4 Pruned Tree-Structured VQ.- 17.5 The Generalized BFOS Algorithm.- 17.6 Pruned Tree-Structured VQ.- 17.7 Entropy Coded VQ.- 17.8 Greedy Tree Growing.- 17.9 Design Examples.- 17.10 Bit Allocation Revisited.- 17.11 Design Algorithms.- 17.12 Problems.
Book by Gersho Allen Gray Robert M
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 10,57 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: WorldofBooks, Goring-By-Sea, WS, Regno Unito
Hardback. Condizione: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Codice articolo GOR009175755
Quantità: 1 disponibili
Da: Crossroad Books, Eau Claire, WI, U.S.A.
Hardcover. Condizione: with no dust jacket. Condizione sovraccoperta: No Dust Jacket. Second Printing. Ex-Corporate Library copy; with typical markings. Library label on front board and on spine tail. Else binding clean. Pages clean, but for library markings. ; TEH22A; 732 pages; Ex-Library. Codice articolo 56993
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Herb Caen, a popular columnist for the San Francisco Chronicle, recently quoted a Voice of America press release as saying that it was reorganizing in order to eliminate duplication and redundancy. This quote both states a goal of data compression and il. Codice articolo 5971314
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792391814_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Herb Caen, a popular columnist for the San Francisco Chronicle, recently quoted a Voice of America press release as saying that it was reorganizing in order to 'eliminate duplication and redundancy. ' This quote both states a goal of data compression and illustrates its common need: the removal of duplication (or redundancy) can provide a more efficient representation of data and the quoted phrase is itself a candidate for such surgery. Not only can the number of words in the quote be reduced without losing informa tion, but the statement would actually be enhanced by such compression since it will no longer exemplify the wrong that the policy is supposed to correct. Here compression can streamline the phrase and minimize the em barassment while improving the English style. Compression in general is intended to provide efficient representations of data while preserving the essential information contained in the data. This book is devoted to the theory and practice of signal compression, i. e. , data compression applied to signals such as speech, audio, images, and video signals (excluding other data types such as financial data or general purpose computer data). The emphasis is on the conversion of analog waveforms into efficient digital representations and on the compression of digital information into the fewest possible bits. Both operations should yield the highest possible reconstruction fidelity subject to constraints on the bit rate and implementation complexity. 760 pp. Englisch. Codice articolo 9780792391814
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -Herb Caen, a popular columnist for the San Francisco Chronicle, recently quoted a Voice of America press release as saying that it was reorganizing in order to 'eliminate duplication and redundancy. ' This quote both states a goal of data compression and illustrates its common need: the removal of duplication (or redundancy) can provide a more efficient representation of data and the quoted phrase is itself a candidate for such surgery. Not only can the number of words in the quote be reduced without losing informa tion, but the statement would actually be enhanced by such compression since it will no longer exemplify the wrong that the policy is supposed to correct. Here compression can streamline the phrase and minimize the em barassment while improving the English style. Compression in general is intended to provide efficient representations of data while preserving the essential information contained in the data. This book is devoted to the theory and practice of signal compression, i. e. , data compression applied to signals such as speech, audio, images, and video signals (excluding other data types such as financial data or general purpose computer data). The emphasis is on the conversion of analog waveforms into efficient digital representations and on the compression of digital information into the fewest possible bits. Both operations should yield the highest possible reconstruction fidelity subject to constraints on the bit rate and implementation complexity.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 760 pp. Englisch. Codice articolo 9780792391814
Quantità: 2 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9780792391814
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 760. Codice articolo 26300676
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 760 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Codice articolo 7547227
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Herb Caen, a popular columnist for the San Francisco Chronicle, recently quoted a Voice of America press release as saying that it was reorganizing in order to 'eliminate duplication and redundancy. ' This quote both states a goal of data compression and illustrates its common need: the removal of duplication (or redundancy) can provide a more efficient representation of data and the quoted phrase is itself a candidate for such surgery. Not only can the number of words in the quote be reduced without losing informa tion, but the statement would actually be enhanced by such compression since it will no longer exemplify the wrong that the policy is supposed to correct. Here compression can streamline the phrase and minimize the em barassment while improving the English style. Compression in general is intended to provide efficient representations of data while preserving the essential information contained in the data. This book is devoted to the theory and practice of signal compression, i. e. , data compression applied to signals such as speech, audio, images, and video signals (excluding other data types such as financial data or general purpose computer data). The emphasis is on the conversion of analog waveforms into efficient digital representations and on the compression of digital information into the fewest possible bits. Both operations should yield the highest possible reconstruction fidelity subject to constraints on the bit rate and implementation complexity. Codice articolo 9780792391814
Quantità: 1 disponibili