The problem of finding minimal surfaces, i. e. of finding the surface of least area among those bounded by a given curve, was one of the first considered after the foundation of the calculus of variations, and is one which received a satis factory solution only in recent years. Called the problem of Plateau, after the blind physicist who did beautiful experiments with soap films and bubbles, it has resisted the efforts of many mathematicians for more than a century. It was only in the thirties that a solution was given to the problem of Plateau in 3-dimensional Euclidean space, with the papers of Douglas [DJ] and Rado [R T1, 2]. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. It was not until thirty years later that the problem of Plateau was successfully attacked in its full generality, by several authors using measure-theoretic methods; in particular see De Giorgi [DG1, 2, 4, 5], Reifenberg [RE], Federer and Fleming [FF] and Almgren [AF1, 2]. Federer and Fleming defined a k-dimensional surface in IR" as a k-current, i. e. a continuous linear functional on k-forms. Their method is treated in full detail in the splendid book of Federer [FH 1].
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
I: Parametric Minimal Surfaces.- 1. Functions of Bounded Variation and Caccioppoli Sets.- 2. Traces of BV Functions.- 3. The Reduced Boundary.- 4. Regularity of the Reduced Boundary.- 5. Some Inequalities.- 6. Approximation of Minimal Sets (I).- 7. Approximation of Minimal Sets (II).- 8. Regularity of Minimal Surfaces.- 9. Minimal Cones.- 10. The First and Second Variation of the Area.- 11. The Dimension of the Singular Set.- II: Non-Parametric Minimal Surfaces.- 12. Classical Solutions of the Minimal Surface Equation.- 13. The a priori Estimate of the Gradient.- 14. Direct Methods.- 15. Boundary Regularity.- 16. A Further Extension of the Notion of Non-Parametric Minimal Surface.- 17. The Bernstein Problem.- Appendix A.- Appendix B.- Appendix C.
Book by Giusti
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 30,00 per la spedizione da Germania a U.S.A.
Destinazione, tempi e costiEUR 7,66 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Germania
1984th ed. 15 x 23 cm. 256 pages. Paperback. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Codice articolo 6908VB
Quantità: 4 disponibili
Da: Better World Books, Mishawaka, IN, U.S.A.
Condizione: Very Good. 1st Edition. Used book that is in excellent condition. May show signs of wear or have minor defects. Codice articolo 18007743-6
Quantità: 1 disponibili
Da: Books From California, Simi Valley, CA, U.S.A.
paperback. Condizione: Very Good. Codice articolo mon0003814136
Quantità: 3 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9780817631536
Quantità: 2 disponibili
Da: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condizione: new. Paperback. The problem of finding minimal surfaces, i. e. of finding the surface of least area among those bounded by a given curve, was one of the first considered after the foundation of the calculus of variations, and is one which received a satis factory solution only in recent years. Called the problem of Plateau, after the blind physicist who did beautiful experiments with soap films and bubbles, it has resisted the efforts of many mathematicians for more than a century. It was only in the thirties that a solution was given to the problem of Plateau in 3-dimensional Euclidean space, with the papers of Douglas [DJ] and Rado [R T1, 2]. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. It was not until thirty years later that the problem of Plateau was successfully attacked in its full generality, by several authors using measure-theoretic methods; in particular see De Giorgi [DG1, 2, 4, 5], Reifenberg [RE], Federer and Fleming [FF] and Almgren [AF1, 2]. Federer and Fleming defined a k-dimensional surface in IR" as a k-current, i. e. a continuous linear functional on k-forms. Their method is treated in full detail in the splendid book of Federer [FH 1]. The problem of finding minimal surfaces, i. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9780817631536
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190237187
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780817631536_new
Quantità: Più di 20 disponibili
Da: Lost Books, AUSTIN, TX, U.S.A.
Trade paperback. 1984 ed. Trade paperback (US). 240 p. Contains: Unspecified. Monographs in Mathematics, 80. Audience: General/trade. Very good in very good dust jacket. Hardcover. ISBN is correct. Light shelf wear to dust jacket. Text is unmarked. Codice articolo Alibris.0016861
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Codice articolo 5975332
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The problem of finding minimal surfaces, i. e. of finding the surface of least area among those bounded by a given curve, was one of the first considered after the foundation of the calculus of variations, and is one which received a satis factory solution only in recent years. Called the problem of Plateau, after the blind physicist who did beautiful experiments with soap films and bubbles, it has resisted the efforts of many mathematicians for more than a century. It was only in the thirties that a solution was given to the problem of Plateau in 3-dimensional Euclidean space, with the papers of Douglas [DJ] and Rado [R T1, 2]. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. It was not until thirty years later that the problem of Plateau was successfully attacked in its full generality, by several authors using measure-theoretic methods; in particular see De Giorgi [DG1, 2, 4, 5], Reifenberg [RE], Federer and Fleming [FF] and Almgren [AF1, 2]. Federer and Fleming defined a k-dimensional surface in IR' as a k-current, i. e. a continuous linear functional on k-forms. Their method is treated in full detail in the splendid book of Federer [FH 1]. 256 pp. Englisch. Codice articolo 9780817631536
Quantità: 2 disponibili