This monograph isdevoted to a special area ofBanach space theory-the Kothe Bochner function space. Two typical questions in this area are: Question 1. Let E be a Kothe function space and X a Banach space. Does the Kothe-Bochner function space E(X) have the Dunford-Pettis property if both E and X have the same property? If the answer is negative, can we find some extra conditions on E and (or) X such that E(X) has the Dunford-Pettis property? Question 2. Let 1~ p~ 00, E a Kothe function space, and X a Banach space. Does either E or X contain an lp-sequence ifthe Kothe-Bochner function space E(X) has an lp-sequence? To solve the above two questions will not only give us a better understanding of the structure of the Kothe-Bochner function spaces but it will also develop some useful techniques that can be applied to other fields, such as harmonic analysis, probability theory, and operator theory. Let us outline the contents of the book. In the first two chapters we provide some some basic results forthose students who do not have any background in Banach space theory. We present proofs of Rosenthal's l1-theorem, James's theorem (when X is separable), Kolmos's theorem, N. Randrianantoanina's theorem that property (V*) is a separably determined property, and Odell-Schlumprecht's theorem that every separable reflexive Banach space has an equivalent 2R norm.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
From the reviews:
"This book is a nice and useful reference for researchers in functional analysis who wish to have a quite comprehensive survey of geometric properties of Banach spaces of vector-valued functions." ---Mathematical Reviews
“This book ... gives in fact an exhaustive and very up-to-date account of several aspects of the general theory (isomorphic) and geometry of Banach spaces. This book is self-contained with an exhaustive list of references at the end of each chapter. Apart from well thought-out exercises at the end of each section, the `Notes and Remarks’ section at the end of each chapter contains several open questions with additional comments and references. This book is worth having on the shelves of anyone interested in Banach space theory. I thoroughly enjoyed going through it.”(ZENTRALBLATT MATH)
"This book, though somewahte restrictively entitled, gives in fact an exhaustive and very up-to-date account of several aspects of the general theory (isomorphic) and geometry of Banach spaces. . . This book is self-contained with an exhaustive list of references at the end of each chapter. Apart from well thoght-out exervises at the end of each section,t he 'Notes and Remarks' section at the end of each chapter contains several open questions with additional somments and references. This book is worth having on the shelves of anyone interested in Banach space theory. I thoroughly enjoyed going through it."
---Zenteralblatt MATH
1 Classical Theorems.- 1.1 Preliminaries.- 1.2 Basic Sequences.- 1.3 Banach Spaces Containing l1 or c0.- 1.4 James’s Theorem.- 1.5 Continuous Function Spaces.- 1.6 The Dunford-Pettis Property.- 1.7 The Pe?czynski Property (V*).- 1.8 Tensor Products of Banach Spaces.- 1.9 Conditional Expectation and Martingales.- 1.10 Notes and Remarks.- 1.11 References.- 2 Convexity and Smoothness.- 2.1 Strict Convexity and Uniform Convexity.- 2.2 Smoothness.- 2.3 Banach-Saks Property.- 2.4 Notes and Remarks.- 2.5 References.- 3 Köthe-Bochner Function Spaces.- 3.1 Köthe Function Spaces.- 3.2 Strongly and Scalarly Measurable Functions.- 3.3 Vector Measure.- 3.4 Some Basic Results.- 3.5 Dunford-Pettis Operators.- 3.6 The Radon-Nikodým Property.- 3.7 Notes and Remarks.- 3.8 References.- 4 Stability Properties I.- 4.1 Extreme Points and Smooth Points.- 4.2 Strongly Extreme and Denting Points.- 4.3 Strongly and w*-Strongly Exposed Points.- 4.4 Notes and Remarks.- 4.5 References.- 5 Stability Properties II.- 5.1 Copies of c0 in E(X).- 5.2 The Díaz-Kalton Theorem.- 5.3 Talagrand’s L1(X)-Theorem.- 5.4 Property (V*).- 5.5 The Talagrand Spaces.- 5.6 The Banach-Saks Property.- 5.7 Notes and Remarks.- 5.8 References.- 6 Continuous Function Spaces.- 6.1 Vector-Valued Continuous Functions.- 6.2 The Dieudonné Property in C(K, X).- 6.3 The Hereditary Dunford-Pettis Property.- 6.4 Projective Tensor Products.- 6.5 Notes and Remarks.- 6.6 References.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEOCT25-122329
Quantità: 1 disponibili
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-87545
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 388. Codice articolo 26300612
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 1997895-n
Quantità: Più di 20 disponibili
Da: ALLBOOKS1, Direk, SA, Australia
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Codice articolo SHAK122329
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190237282
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 388 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Codice articolo 7547291
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. 388. Codice articolo 18300622
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780817635213_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 1997895-n
Quantità: Più di 20 disponibili