On the Splitting of Invariant Manifolds in Multidimensional Near-Integrable Hamiltonian Systems (Memoirs of the American Mathematical Society)

Valutazione media 0
( su 0 valutazioni fornite da Goodreads )
 
9780821832684: On the Splitting of Invariant Manifolds in Multidimensional Near-Integrable Hamiltonian Systems (Memoirs of the American Mathematical Society)

In this text we take up the problem of the splitting of invariant manifolds in multidimensional Hamiltonian systems, stressing the canonical features of the problem. We first conduct a geometric study, which for a large part is not restricted to the perturbative situation of near-integrable systems. This point of view allows us to clarify some previously obscure points, in particular the symmetry and variance properties of the splitting matrix (indeed its very definition(s)) and more generally the connection with symplectic geometry. Using symplectic normal forms, we then derive local exponential upper bounds for the splitting matrix in the perturbative analytic case, under fairly general circumstances covering in particular resonances of any multiplicity.The next technical input is the introduction of a canonically invariant scheme for the computation of the splitting matrix. It is based on the familiar Hamilton-Jacobi picture and thus again is symplectically invariant from the outset. It is applied here to a standard Hamiltonian exhibiting many of the important features of the problem and allows us to explore in a unified way the question of finding lower bounds for the splitting matrix, in particular that of justifying a first order computation (the so-called Poincare-Melnikov approximation). Although we do not specifically address the issue in this paper we mention that the problem of the splitting of the invariant manifold is well-known to be connected with the existence of a global instability in these multidimensional Hamiltonian systems and we hope the present study will ultimately help shed light on this important connection first noted and explored by V. I. Arnold.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

I migliori risultati di ricerca su AbeBooks

1.

P. Lochak; J. P. Marco; D. Sauzin
Editore: Amer Mathematical Society (2003)
ISBN 10: 0821832689 ISBN 13: 9780821832684
Nuovi Mass Market Paperback Quantità: 1
Da
Ergodebooks
(RICHMOND, TX, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Amer Mathematical Society, 2003. Mass Market Paperback. Condizione libro: New. Codice libro della libreria SONG0821832689

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 10,65
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,40
In U.S.A.
Destinazione, tempi e costi

2.

P. Lochak; J. P. Marco; D. Sauzin
Editore: American Mathematical Society (2003)
ISBN 10: 0821832689 ISBN 13: 9780821832684
Nuovi Mass Market Paperback Quantità: > 20
Da
Sequitur Books
(Boonsboro, MD, U.S.A.)
Valutazione libreria
[?]

Descrizione libro American Mathematical Society, 2003. Mass Market Paperback. Condizione libro: New. Brand new. We distribute directly for the publisher. In this text we take up the problem of the splitting of invariant manifolds in multidimensional Hamiltonian systems, stressing the canonical features of the problem. We first conduct a geometric study, which for a large part is not restricted to the perturbative situation of near-integrable systems. This point of view allows us to clarify some previously obscure points, in particular the symmetry and variance properties of the splitting matrix (indeed its very definition(s)) and more generally the connection with symplectic geometry. Using symplectic normal forms, we then derive local exponential upper bounds for the splitting matrix in the perturbative analytic case, under fairly general circumstances covering in particular resonances of any multiplicity. The next technical input is the introduction of a canonically invariant scheme for the computation of the splitting matrix. It is based on the familiar Hamilton-Jacobi picture and thus again is symplectically invariant from the outset. It is applied here to a standard Hamiltonian exhibiting many of the important features of the problem and allows us to explore in a unified way the question of finding lower bounds for the splitting matrix, in particular that of justifying a first order computation (the so-called Poincaré-Melnikov approximation). Although we do not specifically address the issue in this paper we mention that the problem of the splitting of the invariant manifold is well-known to be connected with the existence of a global instability in these multidimensional Hamiltonian systems and we hope the present study will ultimately help shed light on this important connection first noted and explored by V. I. Arnold. Codice libro della libreria 1005250114

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 47,42
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,41
In U.S.A.
Destinazione, tempi e costi

3.

P. Lochak, J. P. Marco, D. Sauzin
Editore: Amer Mathematical Society (2003)
ISBN 10: 0821832689 ISBN 13: 9780821832684
Nuovi Mass Market Paperback Quantità: 1
Da
Ergodebooks
(RICHMOND, TX, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Amer Mathematical Society, 2003. Mass Market Paperback. Condizione libro: New. Codice libro della libreria DADAX0821832689

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 65,43
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,40
In U.S.A.
Destinazione, tempi e costi

4.

P. Lochak, J. -P Marco and D. Sauzin
ISBN 10: 0821832689 ISBN 13: 9780821832684
Nuovi Quantità: 1
Da
Castle Rock
(Pittsford, NY, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Condizione libro: Brand New. Book Condition: Brand New. Codice libro della libreria 97808218326841.0

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 92,06
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,40
In U.S.A.
Destinazione, tempi e costi