KAM Stability and Celestial Mechanics

Valutazione media 0
( su 0 valutazioni fornite da GoodReads )
 
9780821841693: KAM Stability and Celestial Mechanics

KAM theory is a powerful tool apt to prove perpetual stability in Hamiltonian systems, which are a perturbation of integrable ones. The smallness requirements for its applicability are well known to be extremely stringent. A long standing problem, in this context, is the application of KAM theory to ``physical systems'' for ``observable'' values of the perturbation parameters. The authors consider the Restricted, Circular, Planar, Three-Body Problem (RCP3BP), i.e., the problem of studying the planar motions of a small body subject to the gravitational attraction of two primary bodies revolving on circular Keplerian orbits (which are assumed not to be influenced by the small body). When the mass ratio of the two primary bodies is small, the RCP3BP is described by a nearly-integrable Hamiltonian system with two degrees of freedom; in a region of phase space corresponding to nearly elliptical motions with non-small eccentricities, the system is well described by Delaunay variables. The Sun-Jupiter observed motion is nearly circular and an asteroid of the Asteroidal belt may be assumed not to influence the Sun-Jupiter motion. The Jupiter-Sun mass ratio is slightly less than 1/1000. The authors consider the motion of the asteroid 12 Victoria taking into account only the Sun-Jupiter gravitational attraction regarding such a system as a prototype of a RCP3BP. For values of mass ratios up to 1/1000, they prove the existence of two-dimensional KAM tori on a fixed three-dimensional energy level corresponding to the observed energy of the Sun-Jupiter-Victoria system. Such tori trap the evolution of phase points ``close'' to the observed physical data of the Sun-Jupiter-Victoria system. As a consequence, in the RCP3BP description, the motion of Victoria is proven to be forever close to an elliptical motion. The proof is based on: 1) a new iso-energetic KAM theory; 2) an algorithm for computing iso-energetic, approximate Lindstedt series; 3) a computer-aided application of 1)+2) to the Sun-Jupiter-Victoria system. The paper is self-contained but does not include the ($\sim$ 12000 lines) computer programs, which may be obtained by sending an e-mail to one of the authors.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

I migliori risultati di ricerca su AbeBooks

1.

Alessandra Celletti; Luigi Chierchia
Editore: American Mathematical Society (2007)
ISBN 10: 0821841696 ISBN 13: 9780821841693
Nuovi Paperback Quantità: > 20
Da
Sequitur Books
(Boonsboro, MD, U.S.A.)
Valutazione libreria
[?]

Descrizione libro American Mathematical Society, 2007. Paperback. Condizione libro: New. Brand new. We distribute directly for the publisher. KAM theory is a powerful tool apt to prove perpetual stability in Hamiltonian systems, which are a perturbation of integrable ones. The smallness requirements for its applicability are well known to be extremely stringent. A long standing problem, in this context, is the application of KAM theory to "physical systems" for "observable" values of the perturbation parameters.The authors consider the Restricted, Circular, Planar, Three-Body Problem (RCP3BP), i.e., the problem of studying the planar motions of a small body subject to the gravitational attraction of two primary bodies revolving on circular Keplerian orbits (which are assumed not to be influenced by the small body). When the mass ratio of the two primary bodies is small, the RCP3BP is described by a nearly-integrable Hamiltonian system with two degrees of freedom; in a region of phase space corresponding to nearly elliptical motions with non-small eccentricities, the system is well described by Delaunay variables. The Sun-Jupiter observed motion is nearly circular and an asteroid of the Asteroidal belt may be assumed not to influence the Sun-Jupiter motion. The Jupiter-Sun mass ratio is slightly less than 1/1000.The authors consider the motion of the asteroid 12 Victoria taking into account only the Sun-Jupiter gravitational attraction regarding such a system as a prototype of a RCP3BP. For values of mass ratios up to 1/1000, they prove the existence of two-dimensional KAM tori on a fixed three-dimensional energy level corresponding to the observed energy of the Sun-Jupiter-Victoria system. Such tori trap the evolution of phase points "close" to the observed physical data of the Sun-Jupiter-Victoria system. As a consequence, in the RCP3BP description, the motion of Victoria is proven to be forever close to an elliptical motion.The proof is based on: 1) a new iso-energetic KAM theory; 2) an algorithm for computing iso-energetic, approximate Lindstedt series; 3) a computer-aided application of 1)+2) to the Sun-Jupiter-Victoria system.The paper is self-contained but does not include the ($\sim$ 12000 lines) computer programs, which may be obtained by sending an e-mail to one of the authors. Codice libro della libreria 1005260182

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 57,31
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,71
In U.S.A.
Destinazione, tempi e costi

2.

Celletti, Alessandra; Chierchia, Luigi
ISBN 10: 0821841696 ISBN 13: 9780821841693
Nuovi Quantità: 1
Da
BWB
(Valley Stream, NY, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Condizione libro: New. Depending on your location, this item may ship from the US or UK. Codice libro della libreria 97808218416930000000

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 71,22
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

3.

Alessandra Celletti, Luigi Chierchia
Editore: American Mathematical Society, United States (2007)
ISBN 10: 0821841696 ISBN 13: 9780821841693
Nuovi Paperback Quantità: 1
Da
The Book Depository US
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro American Mathematical Society, United States, 2007. Paperback. Condizione libro: New. Illustrated edition. 8 x 171 mm. Language: English . Brand New Book. KAM theory is a powerful tool apt to prove perpetual stability in Hamiltonian systems, which are a perturbation of integrable ones. The smallness requirements for its applicability are well known to be extremely stringent. A long standing problem, in this context, is the application of KAM theory to physical systems for observable values of the perturbation parameters. The authors consider the Restricted, Circular, Planar, Three-Body Problem (RCP3BP), i.e., the problem of studying the planar motions of a small body subject to the gravitational attraction of two primary bodies revolving on circular Keplerian orbits (which are assumed not to be influenced by the small body). When the mass ratio of the two primary bodies is small, the RCP3BP is described by a nearly-integrable Hamiltonian system with two degrees of freedom; in a region of phase space corresponding to nearly elliptical motions with non-small eccentricities, the system is well described by Delaunay variables. The Sun-Jupiter observed motion is nearly circular and an asteroid of the Asteroidal belt may be assumed not to influence the Sun-Jupiter motion. The Jupiter-Sun mass ratio is slightly less than 1/1000. The authors consider the motion of the asteroid 12 Victoria taking into account only the Sun-Jupiter gravitational attraction regarding such a system as a prototype of a RCP3BP. For values of mass ratios up to 1/1000, they prove the existence of two-dimensional KAM tori on a fixed three-dimensional energy level corresponding to the observed energy of the Sun-Jupiter-Victoria system. Such tori trap the evolution of phase points close to the observed physical data of the Sun-Jupiter-Victoria system. As a consequence, in the RCP3BP description, the motion of Victoria is proven to be forever close to an elliptical motion. The proof is based on: 1) a new iso-energetic KAM theory; 2) an algorithm for computing iso-energetic, approximate Lindstedt series; 3) a computer-aided application of 1)+2) to the Sun-Jupiter-Victoria system. The paper is self-contained but does not include the ($ sim$ 12000 lines) computer programs, which may be obtained by sending an e-mail to one of the authors. Codice libro della libreria AAN9780821841693

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 71,43
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

4.

Alessandra Celletti, Luigi Chierchia
Editore: American Mathematical Society, United States (2007)
ISBN 10: 0821841696 ISBN 13: 9780821841693
Nuovi Paperback Quantità: 1
Da
The Book Depository
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro American Mathematical Society, United States, 2007. Paperback. Condizione libro: New. Illustrated edition. 8 x 171 mm. Language: English . Brand New Book. KAM theory is a powerful tool apt to prove perpetual stability in Hamiltonian systems, which are a perturbation of integrable ones. The smallness requirements for its applicability are well known to be extremely stringent. A long standing problem, in this context, is the application of KAM theory to physical systems for observable values of the perturbation parameters. The authors consider the Restricted, Circular, Planar, Three-Body Problem (RCP3BP), i.e., the problem of studying the planar motions of a small body subject to the gravitational attraction of two primary bodies revolving on circular Keplerian orbits (which are assumed not to be influenced by the small body). When the mass ratio of the two primary bodies is small, the RCP3BP is described by a nearly-integrable Hamiltonian system with two degrees of freedom; in a region of phase space corresponding to nearly elliptical motions with non-small eccentricities, the system is well described by Delaunay variables. The Sun-Jupiter observed motion is nearly circular and an asteroid of the Asteroidal belt may be assumed not to influence the Sun-Jupiter motion. The Jupiter-Sun mass ratio is slightly less than 1/1000. The authors consider the motion of the asteroid 12 Victoria taking into account only the Sun-Jupiter gravitational attraction regarding such a system as a prototype of a RCP3BP. For values of mass ratios up to 1/1000, they prove the existence of two-dimensional KAM tori on a fixed three-dimensional energy level corresponding to the observed energy of the Sun-Jupiter-Victoria system. Such tori trap the evolution of phase points close to the observed physical data of the Sun-Jupiter-Victoria system. As a consequence, in the RCP3BP description, the motion of Victoria is proven to be forever close to an elliptical motion. The proof is based on: 1) a new iso-energetic KAM theory; 2) an algorithm for computing iso-energetic, approximate Lindstedt series; 3) a computer-aided application of 1)+2) to the Sun-Jupiter-Victoria system. The paper is self-contained but does not include the ($ sim$ 12000 lines) computer programs, which may be obtained by sending an e-mail to one of the authors. Codice libro della libreria AAN9780821841693

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 71,48
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

5.

Alessandra Celletti, Luigi Chierchia
Editore: American Mathematical Society
ISBN 10: 0821841696 ISBN 13: 9780821841693
Nuovi Paperback Quantità: 1
Da
THE SAINT BOOKSTORE
(Southport, Regno Unito)
Valutazione libreria
[?]

Descrizione libro American Mathematical Society. Paperback. Condizione libro: new. BRAND NEW, KAM Stability and Celestial Mechanics (Illustrated edition), Alessandra Celletti, Luigi Chierchia, KAM theory is a powerful tool apt to prove perpetual stability in Hamiltonian systems, which are a perturbation of integrable ones. The smallness requirements for its applicability are well known to be extremely stringent. A long standing problem, in this context, is the application of KAM theory to ""physical systems"" for ""observable"" values of the perturbation parameters. The authors consider the Restricted, Circular, Planar, Three-Body Problem (RCP3BP), i.e., the problem of studying the planar motions of a small body subject to the gravitational attraction of two primary bodies revolving on circular Keplerian orbits (which are assumed not to be influenced by the small body). When the mass ratio of the two primary bodies is small, the RCP3BP is described by a nearly-integrable Hamiltonian system with two degrees of freedom; in a region of phase space corresponding to nearly elliptical motions with non-small eccentricities, the system is well described by Delaunay variables. The Sun-Jupiter observed motion is nearly circular and an asteroid of the Asteroidal belt may be assumed not to influence the Sun-Jupiter motion. The Jupiter-Sun mass ratio is slightly less than 1/1000. The authors consider the motion of the asteroid 12 Victoria taking into account only the Sun-Jupiter gravitational attraction regarding such a system as a prototype of a RCP3BP. For values of mass ratios up to 1/1000, they prove the existence of two-dimensional KAM tori on a fixed three-dimensional energy level corresponding to the observed energy of the Sun-Jupiter-Victoria system. Such tori trap the evolution of phase points ""close"" to the observed physical data of the Sun-Jupiter-Victoria system. As a consequence, in the RCP3BP description, the motion of Victoria is proven to be forever close to an elliptical motion. The proof is based on: 1) a new iso-energetic KAM theory; 2) an algorithm for computing iso-energetic, approximate Lindstedt series; 3) a computer-aided application of 1)+2) to the Sun-Jupiter-Victoria system. The paper is self-contained but does not include the ($\sim$ 12000 lines) computer programs, which may be obtained by sending an e-mail to one of the authors. Codice libro della libreria B9780821841693

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 67,17
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 6,89
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

6.

Alessandra Celletti
Editore: American Mathematical Society (2007)
ISBN 10: 0821841696 ISBN 13: 9780821841693
Nuovi Quantità: 1
Da
Books2Anywhere
(Fairford, GLOS, Regno Unito)
Valutazione libreria
[?]

Descrizione libro American Mathematical Society, 2007. PAP. Condizione libro: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Codice libro della libreria CE-9780821841693

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 64,95
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 10,45
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

7.

Alessandra Celletti, Luigi Chierchia
Editore: Amer Mathematical Society (2007)
ISBN 10: 0821841696 ISBN 13: 9780821841693
Nuovi Paperback Quantità: 1
Da
Ergodebooks
(RICHMOND, TX, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Amer Mathematical Society, 2007. Paperback. Condizione libro: New. Codice libro della libreria DADAX0821841696

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 78,32
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,70
In U.S.A.
Destinazione, tempi e costi

8.

Celletti, Alessandra; Chierchia, Luigi
Editore: Amer Mathematical Society (2007)
ISBN 10: 0821841696 ISBN 13: 9780821841693
Nuovi Paperback Quantità: 1
Da
Irish Booksellers
(Rumford, ME, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Amer Mathematical Society, 2007. Paperback. Condizione libro: New. book. Codice libro della libreria 0821841696

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 88,63
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

9.

Celletti, Alessandra/ Chierchia, Luigi
Editore: Amer Mathematical Society (2007)
ISBN 10: 0821841696 ISBN 13: 9780821841693
Nuovi Paperback Quantità: 1
Da
Revaluation Books
(Exeter, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Amer Mathematical Society, 2007. Paperback. Condizione libro: Brand New. illustrated edition edition. 134 pages. 9.50x6.75x0.25 inches. In Stock. Codice libro della libreria __0821841696

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 93,79
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 6,96
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

10.

Alessandra Celletti
ISBN 10: 0821841696 ISBN 13: 9780821841693
Nuovi Quantità: 1
Da
Castle Rock
(Pittsford, NY, U.S.A.)
Valutazione libreria
[?]

Descrizione libro Condizione libro: Brand New. Book Condition: Brand New. Codice libro della libreria 97808218416931.0

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 108,65
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,70
In U.S.A.
Destinazione, tempi e costi

Vedi altre copie di questo libro

Vedi tutti i risultati per questo libro