One of the currently most active research areas within Artificial Intelligence is the field of Machine Learning. which involves the study and development of computational models of learning processes. A major goal of research in this field is to build computers capable of improving their performance with practice and of acquiring knowledge on their own. The intent of this book is to provide a snapshot of this field through a broad. representative set of easily assimilated short papers. As such. this book is intended to complement the two volumes of Machine Learning: An Artificial Intelligence Approach (Morgan-Kaufman Publishers). which provide a smaller number of in-depth research papers. Each of the 77 papers in the present book summarizes a current research effort. and provides references to longer expositions appearing elsewhere. These papers cover a broad range of topics. including research on analogy. conceptual clustering. explanation-based generalization. incremental learning. inductive inference. learning apprentice systems. machine discovery. theoretical models of learning. and applications of machine learning methods. A subject index IS provided to assist in locating research related to specific topics. The majority of these papers were collected from the participants at the Third International Machine Learning Workshop. held June 24-26. 1985 at Skytop Lodge. Skytop. Pennsylvania. While the list of research projects covered is not exhaustive. we believe that it provides a representative sampling of the best ongoing work in the field. and a unique perspective on where the field is and where it is headed.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Judge: A Case-Based Reasoning System.- Changing Language While Learning Recursive Descriptions from Examples.- Learning by Disjunctive Spanning.- Transfer of Knowledge between Teaching and Learning Systems.- Some Approaches to Knowledge Acquisition.- Analogical Learning with Multiple Models.- The World Modelers Project: Objectives and Simulator Architecture.- The Acquisition of Procedural Knowledge through Inductive Learning.- Learning Static Evaluation Functions by Linear Regression.- Plan Invention and Plan Transformation.- A Brief Overview of Explanatory Schema Acquisition.- The EG Project: Recent Progress.- Learning Causal Relations.- Functional Properties and Concept Formation.- Explanation-Based Learning in Logic Circuit Design.- A Proposed Method of Conceptual Clustering for Structured and Decomposable Objects.- Exploiting Functional Vocabularies to Learn Structural Descriptions.- Combining Numeric and Symbolic Learning Techniques.- Learning by Understanding Analogies.- Analogical Reasoning in the Context of Acquiring Problem Solving Expertise.- Planning and Learning in a Design Domain: The Problems Plan Interactions.- Inference of Incorrect Operators.- A Conceptual Framework for Concept Identification.- Neural Modeling as One Approach to Machine Learning.- Steps Toward Building a Dynamic Memory.- Learning by Composition.- Knowledge Acquisition: Investigations and General Principles.- Purpose-Directed Analogy: A Summary of Current Research.- Development of a Framework for Contextual Concept Learning.- On Safely Ignoring Hypotheses.- A Model of Acquiring Problem Solving Expertise.- Another Learning Problem: Symbolic Process Prediction.- Learning at LRI Orsay.- Coper: A Methodology for Learning Invariant Functional Descriptions.- Using Experience as a Guide for Problem Solving.- Heuristics as Invariants and its Application to Learning.- Components of Learning in a Reactive Environment.- The Development of Structures through Interaction.- Complex Learning Environments: Hierarchies and the use of Explanation.- Prediction and Control in an Active Environment.- Better Information Retrieval through Linguistic Sophistication.- Machine Learning Research in the Artificial Intelligence Laboratory at Illinois.- Overview of the Prodigy Learning Apprentice.- A Learning Apprentice System for VLSI Design.- Generalizing Explanations of Narratives into Schemata.- Why Are Design Derivations Hard to Replay?.- An Architecture for Experiential Learning.- Knowledge Extraction through Learning from Examples.- Learning Concepts with a Prototype-Based Model for Concept Representation.- Recent Progress on the Mathematician’s Apprentice Project.- Acquiring Domain Knowledge from Fragments of Advice.- Calm: Contestation for Argumentative Learning Machine.- Directed Experimentation for Theory Revision and Conceptual Knowledge Acquisition.- Goal-Free Learning by Analogy.- A Scientific Approach to Practical Induction.- Exploring Shifts of Representation.- Current Research on Learning in Soar.- Learning Concepts in a Complex Robot World.- Learning Evaluation Functions.- Learning from Data with Errors.- Explanation-Based Manipulator Learning.- Learning Classical Physics.- Views and Causality in Discovery: Modelling Human Induction.- Learning Control Information.- An Investigation of the Nature of Mathematical Discovery.- Learning How to Reach a Goal: A Strategy for the Multiple Classes Classification Problem.- Conceptual Clustering Of Structured Objects.- Learning in Intractable Domains.- On Compiling Explainable Models of a Design Domain.- What Can Be Learned?.- Learning Heuristic Rules from Deep Reasoning.- Learning a Domain Theory by Completing Explanations.- Learning Implementation Rules with Operating-Conditions Depending on Internal Structures in VLSI Design.- Overview of the Odysseus Learning Apprentice.- Learning from Exceptions in Databases.- Learning Apprentice Systems Research at Schlumberger.- Language Acquisition: Learning Phrases in Context.- References.
Book by None
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 10,00 per la spedizione da Francia a U.S.A.
Destinazione, tempi e costiEUR 6,14 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Ammareal, Morangis, Francia
Hardcover. Condizione: Bon. Ancien livre de bibliothèque. Traces d'usure sur la couverture. Edition 1986. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Signs of wear on the cover. Edition 1986. Ammareal gives back up to 15% of this item's net price to charity organizations. Codice articolo E-843-201
Quantità: 1 disponibili
Da: Saul54, Lynn, MA, U.S.A.
Hardcover. Condizione: As New. No Jacket. Kluwer Academic Publishers (1986). AsNew Hardcover (Decorated mostly White binding, Black lettering, no dj). New Unused book. 10.25"x7.25"x1.1". be5x. Codice articolo ABE-18967978536
Quantità: 1 disponibili
Da: BennettBooksLtd, North Las Vegas, NV, U.S.A.
Hardcover. Condizione: New. In shrink wrap. Looks like an interesting title! Codice articolo Q-0898382149
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 1206121-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780898382143_new
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 1206121-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 1206121
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 1206121
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. One of the currently most active research areas within Artificial Intelligence is the field of Machine Learning. which involves the study and development of computational models of learning processes. A major goal of research in this field is to build compu. Codice articolo 458446665
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -One of the currently most active research areas within Artificial Intelligence is the field of Machine Learning. which involves the study and development of computational models of learning processes. A major goal of research in this field is to build computers capable of improving their performance with practice and of acquiring knowledge on their own. The intent of this book is to provide a snapshot of this field through a broad. representative set of easily assimilated short papers. As such. this book is intended to complement the two volumes of Machine Learning: An Artificial Intelligence Approach (Morgan-Kaufman Publishers). which provide a smaller number of in-depth research papers. Each of the 77 papers in the present book summarizes a current research effort. and provides references to longer expositions appearing elsewhere. These papers cover a broad range of topics. including research on analogy. conceptual clustering. explanation-based generalization. incremental learning. inductive inference. learning apprentice systems. machine discovery. theoretical models of learning. and applications of machine learning methods. A subject index IS provided to assist in locating research related to specific topics. The majority of these papers were collected from the participants at the Third International Machine Learning Workshop. held June 24-26. 1985 at Skytop Lodge. Skytop. Pennsylvania. While the list of research projects covered is not exhaustive. we believe that it provides a representative sampling of the best ongoing work in the field. and a unique perspective on where the field is and where it is headed. 429 pp. Englisch. Codice articolo 9780898382143
Quantità: 2 disponibili