An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods.
The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples.
The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities.
Features:
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Peter Congdon is Research Professor in Quantitative Geography and Health Statistics at Queen Mary, University of London.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,30 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 9,97 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Codice articolo C9781032177151
Quantità: 5 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Peter Congdon is Research Professor in Quantitative Geography and Health Statistics at Queen Mary, University of London.An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demo. Codice articolo 508226938
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 209. Codice articolo B9781032177151
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods.The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples.The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities.Features:Provides a comprehensive and accessible overview of applied Bayesian hierarchical modellingIncludes many real data examples to illustrate different modelling topicsR code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementationSoftware options and coding principles are introduced in new chapter on computingPrograms and data sets available on the book's website 594 pp. Englisch. Codice articolo 9781032177151
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 43662815-n
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781032177151
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 391094514
Quantità: 3 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 43662815
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 43662815-n
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781032177151
Quantità: Più di 20 disponibili