Computer vision-based crack-like object detection has many useful applications, such as inspecting/monitoring pavement surface, underground pipeline, bridge cracks, railway tracks etc. However, in most contexts, cracks appear as thin, irregular long-narrow objects, and often are buried in complex, textured background with high diversity which make the crack detection very challenging. During the past a few years, deep learning technique has achieved great success and has been utilized for solving a variety of object detection problems.
This book discusses crack-like object detection problem comprehensively. It starts by discussing traditional image processing approaches for solving this problem, and then introduces deep learning-based methods. It provides a detailed review of object detection problems and focuses on the most challenging problem, crack-like object detection, to dig deep into the deep learning method. It includes examples of real-world problems, which are easy to understand and could be a good tutorial for introducing computer vision and machine learning.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Kaige Zhang has a B.S. degree (2011) in electronic engineering from the Harbin Institute of Technology, China, and a Ph.D. degree (2019) in computer science from Utah State University, USA. His research interests include computer vision, machine learning, and the applications on intelligent transportation systems, precision agriculture, and biomedical data analytics. Dr. Zhang has been the reviewer for many top journals in his research areas, such as IEEE Transactions on ITS, IEEE Trans. On T-IV, J. of Comput. in Civil Eng., Scientific Report, etc.
Heng-Da Cheng has a Ph.D. in Electrical Engineering from Purdue University, West Lafayette, IN, USA in 1985 under the supervision Prof. K. S. Fu. He is a Full Professor with the Department of Computer Science, Utah State University, Logan, UT. He has authored over 350 technical papers and is the Associate Editor of Pattern Recognition, Information Sciences, and New Mathematics and Natural Computation.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,37 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 8,24 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 45515725
Quantità: Più di 20 disponibili
Da: Speedyhen, London, Regno Unito
Condizione: NEW. Codice articolo NW9781032181189
Quantità: 3 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. New copy - Usually dispatched within 4 working days. 166. Codice articolo B9781032181189
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 45515725-n
Quantità: Più di 20 disponibili
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condizione: New. 2023. 1st Edition. Hardcover. . . . . . Codice articolo V9781032181189
Quantità: 3 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781032181189_new
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 402146823
Quantità: 3 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Kaige Zhang has a B.S. degree (2011) in electronic engineering from the Harbin Institute of Technology, China, and a Ph.D. degree (2019) in computer science from Utah State University, USA. His research interests include computer vision,. Codice articolo 780207360
Quantità: 3 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
HRD. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L1-9781032181189
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 100 pages. 8.50x5.44x1.30 inches. In Stock. This item is printed on demand. Codice articolo __1032181184
Quantità: 1 disponibili