Articoli correlati a Hierarchical Modeling and Analysis for Spatial Data

Hierarchical Modeling and Analysis for Spatial Data - Rilegato

 
9781032508559: Hierarchical Modeling and Analysis for Spatial Data

Sinossi

Hierarchical Modeling and Analysis for Spatial Data, Third Edition is the latest edition of this popular and authoritative text on Bayesian modeling and inference for spatial and spatial-temporal data. The text presents a comprehensive and up-to-date treatment of hierarchical and multilevel modeling for spatial and spatio-temporal data within a Bayesian framework. Over the past decade since the second edition, spatial statistics has evolved significantly driven by an explosion in data availability and advances in Bayesian computation. This edition reflects those changes, introducing new methods, expanded applications, and enhanced computational resources to support researchers and practitioners across disciplines, including environmental science, ecology, and public health.

Key features of the third edition:

  • A dedicated chapter on state-of-the-art Bayesian modeling of large spatial and spatio-temporal datasets
  • Two new chapters on spatial point pattern analysis, covering both foundational and Bayesian perspectives
  • A new chapter on spatial data fusion, integrating diverse spatial data sources from different probabilistic mechanisms
  • An accessible introduction to GPS mapping, geodesic distances, and mathematical cartography
  • An expanded special topics chapter, including spatial challenges with finite population modeling and spatial directional data
  • A thoroughly revised chapter on Bayesian inference, featuring an updated review of modern computational techniques
  • A dedicated GitHub repository providing R programs and solutions to selected exercises, ensuring continued access to evolving software developments

With refreshed content throughout, this edition serves as an essential reference for statisticians, data scientists, and researchers working with spatial data. Graduate students and professionals seeking a deep understanding of Bayesian spatial modeling will find this volume an invaluable resource for both theory and practice.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Alan E. Gelfand is The James B Duke Professor Emeritus of Statistical Science at Duke University. He also enjoys a secondary appointment as Professor of Environmental Science and Policy in the Nicholas School. Author of more than 330 papers and 6 books, Gelfand is internationally known for his contributions to applied statistics, Bayesian computation and Bayesian inference. For the past thirty years, Gelfand’s primary research focus has been in the area of statistical modeling for spatial and space-time data. He has advanced methodology, using the Bayesian paradigm, to associate fully model-based inference with spatial and space-time data. His chief areas of application include spatio-temporal environmental and ecological processes.

Sudipto Banerjee is Professor of Biostatistics and Senior Associate Dean for Academic Programs in the Fielding School of Public Health at the University of California, Los Angeles (UCLA). He holds joint appointments as a Professor in the UCLA Department of Statistics and Data Science and as an Affiliate faculty in the UCLA Institute of Environment and Sustainability. Banerjee has authored over 200 research articles, 2 textbooks, 2 committee reports for the National Research Council of the National Academies, and an edited handbook on spatial epidemiology. Banerjee is well-known for his research expertise and methodological advancements in Bayesian hierarchical modeling and inference for spatial-temporal data; theoretical and computational developments for Gaussian processes; environmental processes and their impact on public health; spatial epidemiology; stochastic process models; statistical learning from physical and mechanistic systems; survey sampling and survival analysis.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 10,39 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Risultati della ricerca per Hierarchical Modeling and Analysis for Spatial Data

Foto dell'editore

Banerjee, Sudipto; Gelfand, Alan E.; Carlin, Bradley P.
Editore: Chapman and Hall/CRC, 2025
ISBN 10: 1032508558 ISBN 13: 9781032508559
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781032508559_new

Contatta il venditore

Compra nuovo

EUR 116,12
Convertire valuta
Spese di spedizione: EUR 10,39
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Sudipto Banerjee
Editore: Taylor & Francis Ltd, 2025
ISBN 10: 1032508558 ISBN 13: 9781032508559
Nuovo Rilegato
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 500. Codice articolo C9781032508559

Contatta il venditore

Compra nuovo

EUR 141,40
Convertire valuta
Spese di spedizione: EUR 9,82
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Sudipto Banerjee
Editore: Taylor & Francis Ltd, 2025
ISBN 10: 1032508558 ISBN 13: 9781032508559
Nuovo Rilegato

Da: CitiRetail, Stevenage, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. Hierarchical Modeling and Analysis for Spatial Data, Third Edition is the latest edition of this popular and authoritative text on Bayesian modeling and inference for spatial and spatial-temporal data. The text presents a comprehensive and up-to-date treatment of hierarchical and multilevel modeling for spatial and spatio-temporal data within a Bayesian framework. Over the past decade since the second edition, spatial statistics has evolved significantly driven by an explosion in data availability and advances in Bayesian computation. This edition reflects those changes, introducing new methods, expanded applications, and enhanced computational resources to support researchers and practitioners across disciplines, including environmental science, ecology, and public health.Key features of the third edition:A dedicated chapter on state-of-the-art Bayesian modeling of large spatial and spatio-temporal datasetsTwo new chapters on spatial point pattern analysis, covering both foundational and Bayesian perspectivesA new chapter on spatial data fusion, integrating diverse spatial data sources from different probabilistic mechanismsAn accessible introduction to GPS mapping, geodesic distances, and mathematical cartographyAn expanded special topics chapter, including spatial challenges with finite population modeling and spatial directional dataA thoroughly revised chapter on Bayesian inference, featuring an updated review of modern computational techniquesA dedicated GitHub repository providing R programs and solutions to selected exercises, ensuring continued access to evolving software developmentsWith refreshed content throughout, this edition serves as an essential reference for statisticians, data scientists, and researchers working with spatial data. Graduate students and professionals seeking a deep understanding of Bayesian spatial modeling will find this volume an invaluable resource for both theory and practice. The 3rd edition of this popular and authoritative text on Bayesian modeling and inference for spatial and spatial-temporal data presents a comprehensive presents a comprehensive and up-to-date treatment of hierarchical and multilevel modeling for spatial and spatio-temporal data within a Bayesian framework. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9781032508559

Contatta il venditore

Compra nuovo

EUR 127,41
Convertire valuta
Spese di spedizione: EUR 34,69
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Sudipto Banerjee
Editore: Taylor & Francis Ltd, 2025
ISBN 10: 1032508558 ISBN 13: 9781032508559
Nuovo Rilegato

Da: Grand Eagle Retail, Mason, OH, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. Hierarchical Modeling and Analysis for Spatial Data, Third Edition is the latest edition of this popular and authoritative text on Bayesian modeling and inference for spatial and spatial-temporal data. The text presents a comprehensive and up-to-date treatment of hierarchical and multilevel modeling for spatial and spatio-temporal data within a Bayesian framework. Over the past decade since the second edition, spatial statistics has evolved significantly driven by an explosion in data availability and advances in Bayesian computation. This edition reflects those changes, introducing new methods, expanded applications, and enhanced computational resources to support researchers and practitioners across disciplines, including environmental science, ecology, and public health.Key features of the third edition:A dedicated chapter on state-of-the-art Bayesian modeling of large spatial and spatio-temporal datasetsTwo new chapters on spatial point pattern analysis, covering both foundational and Bayesian perspectivesA new chapter on spatial data fusion, integrating diverse spatial data sources from different probabilistic mechanismsAn accessible introduction to GPS mapping, geodesic distances, and mathematical cartographyAn expanded special topics chapter, including spatial challenges with finite population modeling and spatial directional dataA thoroughly revised chapter on Bayesian inference, featuring an updated review of modern computational techniquesA dedicated GitHub repository providing R programs and solutions to selected exercises, ensuring continued access to evolving software developmentsWith refreshed content throughout, this edition serves as an essential reference for statisticians, data scientists, and researchers working with spatial data. Graduate students and professionals seeking a deep understanding of Bayesian spatial modeling will find this volume an invaluable resource for both theory and practice. The 3rd edition of this popular and authoritative text on Bayesian modeling and inference for spatial and spatial-temporal data presents a comprehensive presents a comprehensive and up-to-date treatment of hierarchical and multilevel modeling for spatial and spatio-temporal data within a Bayesian framework. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781032508559

Contatta il venditore

Compra nuovo

EUR 130,12
Convertire valuta
Spese di spedizione: EUR 64,20
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello