Getting your models into production is the fundamental challenge of machine learning. MLOps offers a set of proven principles aimed at solving this problem in a reliable and automated way. This insightful guide takes you through what MLOps is (and how it differs from DevOps) and shows you how to put it into practice to operationalize your machine learning models.
Current and aspiring machine learning engineers--or anyone familiar with data science and Python--will build a foundation in MLOps tools and methods (along with AutoML and monitoring and logging), then learn how to implement them in AWS, Microsoft Azure, and Google Cloud. The faster you deliver a machine learning system that works, the faster you can focus on the business problems you're trying to crack. This book gives you a head start.
You'll discover how to:
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Noah Gift is the founder of Pragmatic A.I. Labs. He lectures at MSDS, at Northwestern, Duke MIDS Graduate Data Science Program, the Graduate Data Science program at UC Berkeley, the UC Davis Graduate School of Management MSBA program, UNC Charlotte Data Science Initiative, and University of Tennessee (as part of the Tennessee Digital Jobs Factory). He teaches and designs graduate machine learning, MLOps, AI, and data science courses, and consulting on machine learning and cloud architecture for students and faculty. As a former CTO, individual contributor, and consultant he has over 20 years' experience shipping revenue-generating products in many industries including film, games, and SaaS.
Alfredo Deza is a passionate software engineer, speaker, author, and former Olympic athlete with almost two decades of DevOps and software engineering experience. He currently teaches Machine Learning Engineering and gives worldwide lectures about software development, personal development, and professional sports. Alfredo has written several books about DevOps and Python, and continues to share his knowledge about resilient infrastructure, testing, and robust development practices in courses, books, and presentations.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: BooksRun, Philadelphia, PA, U.S.A.
Paperback. Condizione: Very Good. 1. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Codice articolo 1098103017-8-1
Quantità: Più di 20 disponibili
Da: HPB-Red, Dallas, TX, U.S.A.
paperback. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_453806191
Quantità: 1 disponibili
Da: HPB-Emerald, Dallas, TX, U.S.A.
paperback. Condizione: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! Codice articolo S_451761401
Quantità: 1 disponibili
Da: Lakeside Books, Benton Harbor, MI, U.S.A.
Condizione: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Codice articolo OTF-S-9781098103019
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 42810476-n
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Practical Mlops: Operationalizing Machine Learning Models. Book. Codice articolo BBS-9781098103019
Quantità: 5 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2317530257111
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 42810476
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781098103019
Quantità: Più di 20 disponibili
Da: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condizione: New. Getting your models into production is the fundamental challenge of machine learning. MLOps offers a set of proven principles aimed at solving this problem in a reliable and automated way. This insightful guide takes you through what MLOps is (and how it differs from DevOps) and shows you how to put it into practice to operationalize your machine learning models.Current and aspiring machine learning engineers--or anyone familiar with data science and Python--will build a foundation in MLOps tools and methods (along with AutoML and monitoring and logging), then learn how to implement them in AWS, Microsoft Azure, and Google Cloud. The faster you deliver a machine learning system that works, the faster you can focus on the business problems you're trying to crack. This book gives you a head start.You'll discover how to:Apply DevOps best practices to machine learningBuild production machine learning systems and maintain themMonitor, instrument, load-test, and operationalize machine learning systemsChoose the correct MLOps tools for a given machine learning taskRun machine learning models on a variety of platforms and devices, including mobile phones and specialized hardware. Codice articolo LU-9781098103019
Quantità: Più di 20 disponibili