This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems, from loading data to training models and leveraging neural networks.
Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure that it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context.
Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. You'll find recipes for:
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,18 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 0,55 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WO-9781098135720
Quantità: 15 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WO-9781098135720
Quantità: 15 disponibili
Da: Speedyhen, London, Regno Unito
Condizione: NEW. Codice articolo NW9781098135720
Quantità: 3 disponibili
Da: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condizione: New. 2nd. This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems all the way from loading data to training models and leveraging neural networks.Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications.You'll find recipes for:Vectors, matrices, and arraysWorking with data from CSV, JSON, SQL, databases, cloud storage, and other sourcesHandling numerical and categorical data, text, images, and dates and timesDimensionality reduction using feature extraction or feature selectionModel evaluation and selectionLinear and logical regression, trees and forests, and k-nearest neighborsSupport vector machines (SVM), naive Bayes, clustering, and tree-based modelsSaving and loading trained models from multiple frameworks. Codice articolo LU-9781098135720
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning 1.45. Book. Codice articolo BBS-9781098135720
Quantità: 5 disponibili
Da: Rarewaves USA United, OSWEGO, IL, U.S.A.
Paperback. Condizione: New. 2nd. This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems all the way from loading data to training models and leveraging neural networks.Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications.You'll find recipes for:Vectors, matrices, and arraysWorking with data from CSV, JSON, SQL, databases, cloud storage, and other sourcesHandling numerical and categorical data, text, images, and dates and timesDimensionality reduction using feature extraction or feature selectionModel evaluation and selectionLinear and logical regression, trees and forests, and k-nearest neighborsSupport vector machines (SVM), naive Bayes, clustering, and tree-based modelsSaving and loading trained models from multiple frameworks. Codice articolo LU-9781098135720
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781098135720
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 45802690-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781098135720_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 45802690-n
Quantità: Più di 20 disponibili