This book introduces theories, methods and applications of density ratio estimation, a newly emerging paradigm in the machine learning community.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Masashi Sugiyama is an Associate Professor in the Department of Computer Science at the Tokyo Institute of Technology.
Taiji Suzuki is an Assistant Professor in the Department of Mathematical Informatics at the University of Tokyo, Japan.
Takafumi Kanamori is an Associate Professor in the Department of Computer Science and Mathematical Informatics at Nagoya University, Japan.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2317530283952
Quantità: Più di 20 disponibili
Da: World of Books (was SecondSale), Montgomery, IL, U.S.A.
Condizione: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00090312129
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26376285325
Quantità: 1 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781108461733
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 370808658
Quantità: 1 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as non-stationarity adaptation, outlier detection, dimensionality reduction, independent component analysis, clustering, classification and conditional density estimation can be systematically solved via the estimation of probability density ratios. The authors offer a comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting and density ratio fitting, as well as describing how these can be applied to machine learning. The book provides mathematical theories for density ratio estimation including parametric and non-parametric convergence analysis and numerical stability analysis to complete the first and definitive treatment of the entire framework of density ratio estimation in machine learning. Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. The book introduces theories, methods and applications of density ratio estimation. This is the first and definitive treatment of the entire framework of density ratio estimation. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781108461733
Quantità: 1 disponibili
Da: Rarewaves.com USA, London, LONDO, Regno Unito
Paperback. Condizione: New. Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as non-stationarity adaptation, outlier detection, dimensionality reduction, independent component analysis, clustering, classification and conditional density estimation can be systematically solved via the estimation of probability density ratios. The authors offer a comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting and density ratio fitting, as well as describing how these can be applied to machine learning. The book provides mathematical theories for density ratio estimation including parametric and non-parametric convergence analysis and numerical stability analysis to complete the first and definitive treatment of the entire framework of density ratio estimation in machine learning. Codice articolo LU-9781108461733
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781108461733_new
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 1st reprint edition. 341 pages. 9.25x5.98x1.06 inches. In Stock. This item is printed on demand. Codice articolo __1108461735
Quantità: 1 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9781108461733
Quantità: Più di 20 disponibili