Now in paperback: the new classic on the theory of statistical inference in statistical models with an infinite-dimensional parameter space.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Evarist Giné (1944–2015) was Head of the Department of Mathematics at the University of Connecticut. Giné was a distinguished mathematician who worked on mathematical statistics and probability in infinite dimensions. He was the author of two books and more than 100 articles.
Richard Nickl is Professor of Mathematical Statistics in the Statistical Laboratory within the Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 2,27 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 2,27 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 42469579-n
Quantità: 6 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2317530289442
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Mathematical Foundations of Infinite-Dimensional Statistical Models. Book. Codice articolo BBS-9781108994132
Quantità: 5 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781108994132
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 42469579
Quantità: 6 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. In nonparametric and high-dimensional statistical models, the classical GaussFisherLe Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, approximation and wavelet theory, and the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In a final chapter the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. Winner of the 2017 PROSE Award for Mathematics. High-dimensional and nonparametric statistical models are ubiquitous in modern data science. This book develops a mathematically coherent and objective approach to statistical inference in such models, with a focus on function estimation problems arising from random samples or from Gaussian regression/signal in white noise problems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781108994132
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781108994132_new
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. revised edition. 690 pages. 9.75x6.75x1.35 inches. In Stock. This item is printed on demand. Codice articolo __110899413X
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 42469579-n
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Revised edition NO-PA16APR2015-KAP. Codice articolo 26386805737
Quantità: 4 disponibili