Detect fraud earlier to mitigate loss and prevent cascading damage
Fraud Analytics Using Descriptive, Predictive, and Social Network Techniquesis an authoritative guidebook for setting up a comprehensive fraud detection analytics solution. Early detection is a key factor in mitigating fraud damage, but it involves more specialized techniques than detecting fraud at the more advanced stages. This invaluable guide details both the theory and technical aspects of these techniques, and provides expert insight into streamlining implementation. Coverage includes data gathering, preprocessing, model building, and post-implementation, with comprehensive guidance on various learning techniques and the data types utilized by each. These techniques are effective for fraud detection across industry boundaries, including applications in insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and more, giving you a highly practical framework for fraud prevention.
It is estimated that a typical organization loses about 5% of its revenue to fraud every year. More effective fraud detection is possible, and this book describes the various analytical techniques your organization must implement to put a stop to the revenue leak.
The longer fraud is allowed to go on, the more harm it causes. It expands exponentially, sending ripples of damage throughout the organization, and becomes more and more complex to track, stop, and reverse. Fraud prevention relies on early and effective fraud detection, enabled by the techniques discussed here. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques helps you stop fraud in its tracks, and eliminate the opportunities for future occurrence.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
BART BAESENS is a full professor at KU Leuven, and a lecturer at the University of Southampton. He has done extensive research on analytics, customer relationship management, web analytics, fraud detection, and credit risk management. He regularly advises and provides consulting support to international firms with respect to their analytics and credit risk management strategy.
VÉRONIQUE VAN VLASSELAER is a PhD researcher in the Department of Decision Sciences and Information Management at KU Leuven. Her research focuses on the development of new techniques for fraud detection by combining predictive and network analytics.
WOUTER VERBEKE is an assistant professor at Vrije Universiteit Brussel (Brussels, Belgium). His research is situated in the field of predictive analytics and complex network analysis with applications in fraud, marketing, credit risk, human resources management, and mobility.
The sooner fraud detection occurs the betteras the likelihood of further losses is lower, potential recoveries are higher, and security issues can be addressed more rapidly. Catching fraud in an early stage, though, is more difficult than detecting it later, and requires specific techniques. Packed with numerous real-world examples, Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques authoritatively shows you how to put historical data to work against fraud.
Authors Bart Baesens, Véronique Van Vlasselaer, and Wouter Verbeke expertly discuss the use of unsupervised learning, supervised learning, and social network learning using techniques across a wide variety of fraud applications, such as insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, and tax evasion. This book provides the essential guidance you need to examine fraud patterns from historical data in order to detect fraud early in the process.
Providing a clear look at the pivotal role analytics plays in managing fraud, this book includes straightforward guidance on:
Read Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques for a comprehensive overview of fraud detection analytical techniques and implementation guidance for an effective fraud prevention solution that works for your organization.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 2,32 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Better World Books, Mishawaka, IN, U.S.A.
Condizione: Very Good. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. Codice articolo 51943504-6
Quantità: 1 disponibili
Da: Textbooks_Source, Columbia, MO, U.S.A.
hardcover. Condizione: Good. 1st Edition. Ships in a BOX from Central Missouri! May not include working access code. Will not include dust jacket. Has used sticker(s) and some writing or highlighting. UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Codice articolo 001841143U
Quantità: 1 disponibili
Da: Patrico Books, Apollo Beach, FL, U.S.A.
hardcover. Condizione: Good. Ships Out Tomorrow! Codice articolo 240507013
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. Codice articolo 23681076-5
Quantità: 1 disponibili
Da: Harry Alter, Sylva, NC, U.S.A.
hardcover, Condizione: Very Good, Wiley, NY, c.2015, 1st., 8vo., hardcover, 367pp., VG+/VG+ $. Codice articolo 99175
Quantità: 1 disponibili
Da: TextbookRush, Grandview Heights, OH, U.S.A.
Condizione: Good. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. Codice articolo 53265664
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 23681076-n
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Hardback or Cased Book. Condizione: New. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection 1.3. Book. Codice articolo BBS-9781119133124
Quantità: 5 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 23681076
Quantità: Più di 20 disponibili
Da: Lakeside Books, Benton Harbor, MI, U.S.A.
Condizione: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Codice articolo OTF-S-9781119133124
Quantità: Più di 20 disponibili