Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory.
Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results.
Features:
· Offers a practical and applied introduction to the most popular machine learning methods.
· Topics covered include feature engineering, resampling, deep learning and more.
· Uses a hands-on approach and real world data.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Brad Boehmke is a data scientist at 84.51° where he wears both software developer and machine learning engineer hats. He is an Adjunct Professor at the University of Cincinnati, author of Data Wrangling with R, and creator of multiple public and private enterprise R packages.
Brandon Greenwell is a data scientist at 84.51° where he works on a diverse team to enable, empower, and encourage others to successfully apply machine learning to solve real business problems. He’s part of the Adjunct Graduate Faculty at Wright State University, an Adjunct Instructor at the University of Cincinnati, and the author of several R packages available on CRAN.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,88 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiGRATIS per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: SecondSale, Montgomery, IL, U.S.A.
Condizione: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00089411774
Quantità: 2 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-157458
Quantità: 2 disponibili
Da: Speedyhen, London, Regno Unito
Condizione: NEW. Codice articolo NW9781138495685
Quantità: 2 disponibili
Da: ALLBOOKS1, Direk, SA, Australia
Codice articolo SHUB157458
Quantità: 1 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Codice articolo C9781138495685
Quantità: 5 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26376431104
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781138495685_new
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 370695647
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 37565092-n
Quantità: 5 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. New copy - Usually dispatched within 4 working days. 921. Codice articolo B9781138495685
Quantità: 1 disponibili