Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation.
The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features.
The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively.
This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Dr. Guozhu Dong is a professor of Computer Science and Engineering at Wright State University. He obtained his Ph.D. in Computer Science from University of Southern California and his B.S. in Mathematics from Shandong University. Before joining Wright State University, he was a faculty member at Flinders University and then at the University of Melbourne. At Wright State University, he was recognized for Excellence in Research in the College of Engineering and Computer Science. His research interests are in data mining, machine learning, database, data science, and artificial intelligence. He co-authored a book on Sequence Data Mining and co-edited a book on Contrast Data Mining. He has served on numerous conference program committees.
Dr. Huan Liu is a professor of Computer Science and Engineering at Arizona State University. He obtained his Ph.D. in Computer Science at University of Southern California and B.Eng. in Computer Science and Electrical Engineering at Shanghai JiaoTong University. Before he joined ASU, he worked at Telecom Australia Research Labs and was on the faculty at National University of Singapore. At Arizona State University, he was recognized for excellence in teaching and research in Computer Science and Engineering and received the 2014 President's Award for Innovation. His research interests are in data mining, machine learning, social computing, and artificial intelligence, investigating interdisciplinary problems that arise in many real-world, data-intensive applications with high-dimensional data of disparate forms such as social media. His well-cited publications include books, book chapters, encyclopedia entries as well as conference and journal papers. He is a co-author of Social Media Mining: An Introduction by Cambridge University Press. He serves on journal editorial boards and numerous conference program committees, and is a founding organizer of the International Conference Series on Social Computing, Behavioral-Cultural Modeling, and Prediction. He is an IEEE Fellow. More can be found at http://www.public.asu.edu/~huanliu.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 10,41 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.
Hardcover. Condizione: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.63. Codice articolo G1138744387I4N00
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dr. Guozhu Dong is a professor of Computer Science and Engineering at Wright State University. He obtained his Ph.D. in Computer Science from University of Southern California and his B.S. in Mathematics from Shandong University. Before . Codice articolo 595426452
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. New copy - Usually dispatched within 4 working days. 837. Codice articolo B9781138744387
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26375633773
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 370411698
Quantità: 3 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18375633767
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 400 pages. 9.50x6.50x1.25 inches. In Stock. Codice articolo __1138744387
Quantità: 1 disponibili
Da: CitiRetail, Stevenage, Regno Unito
Hardcover. Condizione: new. Hardcover. Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features.The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively.This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics. Edited by two of the leading experts in the field, this book provides a comprehensive reference book on feature engineering. The book provides a description of problems and applications for feature engineering, as well as its techniques, principles, issues, and challenges. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9781138744387
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Neuware. Codice articolo 9781138744387
Quantità: 1 disponibili
Da: Grand Eagle Retail, Mason, OH, U.S.A.
Hardcover. Condizione: new. Hardcover. Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features.The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively.This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics. Edited by two of the leading experts in the field, this book provides a comprehensive reference book on feature engineering. The book provides a description of problems and applications for feature engineering, as well as its techniques, principles, issues, and challenges. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781138744387
Quantità: 1 disponibili