This research focuses on reducing computational time in parameter optimization by using multiple surrogates and subprocess CPU times without compromising the quality of the results. This is motivated by applications that have objective functions with expensive computational times at high delity solutions. Applying, matching, and tuning optimization techniques at an algorithm level can reduce the time spent on unpro table computations for parameter optimization. The objective is to recover known parameters of a -ow property reference image by comparing to a template image that comes from a computational -uid dynamics simulation, followed by a numerical image registration and comparison process. Mixed variable pattern search and mesh adaptive direct search methods were applied using surrogate functions in the search step to produce solutions within a tolerance level of experimental observations. The surrogate functions are based on previous function values and computational times of those values. The use of multiple surrogates at each search step provides parameter selections that lead to improved solutions of an objective function evaluation with less computational time. Previously computed values for the objective function and computation time were used to compute a time cut-o parameter that allows termination during an objective function evaluation if the computational time exceeded a threshold or a divergent template image was created. This approach was tested using DACE and radial basis function surrogates within the NOMADm MATLABr software. The numerical results are presented.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,69 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 1,97 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781288311422
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781288311422
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781288311422_new
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 325. Codice articolo C9781288311422
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. KlappentextrnrnThis research focuses on reducing computational time in parameter optimization by using multiple surrogates and subprocess CPU times without compromising the quality of the results. This is motivated by applications that have obje. Codice articolo 6554793
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9781288311422
Quantità: 10 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 158. Codice articolo 26390601413
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 158. Codice articolo 390047002
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 158. Codice articolo 18390601423
Quantità: 4 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Neuware - This research focuses on reducing computational time in parameter optimization by using multiple surrogates and subprocess CPU times without compromising the quality of the results. This is motivated by applications that have objective functions with expensive computational times at high delity solutions. Applying, matching, and tuning optimization techniques at an algorithm level can reduce the time spent on unpro table computations for parameter optimization. The objective is to recover known parameters of a -ow property reference image by comparing to a template image that comes from a computational -uid dynamics simulation, followed by a numerical image registration and comparison process. Mixed variable pattern search and mesh adaptive direct search methods were applied using surrogate functions in the search step to produce solutions within a tolerance level of experimental observations. The surrogate functions are based on previous function values and computational times of those values. The use of multiple surrogates at each search step provides parameter selections that lead to improved solutions of an objective function evaluation with less computational time. Previously computed values for the objective function and computation time were used to compute a time cut-o parameter that allows termination during an objective function evaluation if the computational time exceeded a threshold or a divergent template image was created. This approach was tested using DACE and radial basis function surrogates within the NOMADm MATLABr software. The numerical results are presented. Codice articolo 9781288311422
Quantità: 2 disponibili