Readers learn to predict and control low- and high-dimensional as well as continuous- and discrete-time nonlinear systems dynamics in complex variables. In the final chapter, all the previously developed methods are used to present the "Holy Grail" of modern physical and cosmological science, the search for the "theory of everything" and the "true" cosmological dynamics.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
From the reviews:
"The book under review presents, in a concise and simple manner, complex dynamical systems, both low- (such as flows in the complex-plane and Riemann sphere) and high-dimensional (flows in complex manifolds), within the continuous- and discrete-time pictures. ... a broad reflection of the current state of the science of complex dynamics. It is a valuable book to read for serious readers who are interested in the whole spectrum of problems related to complex-valued nonlinear dynamics and in how to directly apply them in the research." (Eugene Kryachko, Zentralblatt MATH, Vol. 1134 (12), 2008)
1 Introduction 1.1 Why Complex Dynamics ? 1.2 Preliminaries: Basics of Complex Numbers and Variables 1.2.1 Complex Numbers and Vectors 1.2.2 Complex Functions 1.2.3 Unit Circle and Riemann Sphere 1.3 Soft Introduction to Quantum Dynamics 1.3.1 Complex Hilbert Space 2 Nonlinear Dynamics in the Complex Plane 2.1 Complex Continuous Dynamics 2.1.1 Complex Nonlinear ODEs 2.1.2 Numerical Integration of Complex ODEs 2.1.3 Complex Hamiltonian Dynamics 2.1.4 Dissipative Dynamics with Complex Hamiltonians 2.1.5 Classical Trajectories for Complex Hamiltonians 2.2 Complex Chaotic Dynamics: Discrete and Symbolic 2.2.1 Basic Fractals and Biomorphs 2.2.2 Mandelbrot Set 2.2.3 Hénon Maps 2.2.4 Smale Horseshoes 3 Complex Quantum Dynamics 3.1 Non–Relativistic Quantum Mechanics 3.1.1 Dirac’s Canonical Quantization 3.1.2 Quantum States and Operators 3.1.3 Quantum Pictures 3.1.4 Spectrum of a Quantum Operator 3.1.5 General Representation Model 3.1.6 Direct Product Space 3.1.7 State–Space for n Quantum Particles 3.2 Relativistic Quantum Mechanics and Electrodynamics 3.2.1 Difficulties of the Relativistic Quantum Mechanics 3.2.2 Particles of Half–Odd Integral Spin 3.2.3 Particles of Integral Spin 3.2.4 Dirac’s Electrodynamics Action Principle 4 Complex Manifolds 4.1 Smooth Manifolds 4.1.1 Intuition and Definition of a Smooth Manifold 4.1.2 (Co)Tangent Bundles of a Smooth Manifold 4.1.3 Lie Derivatives, Lie Groups and Lie Algebras 4.1.4 Riemannian, Finsler and Symplectic Manifolds 4.1.5 Hamilton–Poisson Geometry and Human Biodynamics 4.2 Complex Manifolds 4.2.1 Complex Metrics: Hermitian and Kähler 4.2.2 Dolbeault Cohomology and Hodge Numbers 4.3 Basics of Kähler Geometry 4.3.1 The Kähler Ricci Flow 4.3.2 Kähler Orbifolds 4.3.3 Kähler Ricci Flow on Kähler–EinsteinOrbifolds 4.3.4 Induced Evolution Equations 4.4 Conformal Killing–Riemannian Geometry 4.4.1 Conformal Killing Vector–Fields and Forms on M 4.4.2 Conformal Killing Tensors and Laplacian Symmetry on M 4.5 Stringy Manifolds 4.5.1 Calabi–Yau Manifolds 4.5.2 Orbifolds 4.5.3 Mirror Symmetry 4.5.4 String Theory in ‘Plain English’ 5 Nonlinear Dynamics on Complex Manifolds 5.1 Gauge Theories 5.1.1 Classical Gauge Theory 5.2 Monopoles 5.2.1 Monopoles in R3 5.2.2 Spectral Curve 5.2.3 Twistor Theory of Monopoles 5.2.4 Nahm Transform and Nahm Equations 5.3 Hermitian Geometry and Complex Relativity 5.3.1 About Space–Time Complexification 5.3.2 Hermitian Geometry 5.3.3 Invariant Action 5.4 Gradient Kähler Ricci Solitons 5.4.1 Introduction 5.4.2 Associated Holomorphic Quantities 5.4.3 Potentials and Local Generality 5.5 Monge–Ampère Equations 5.5.1 Monge–Ampère Equations and Hitchin Pairs 5.5.2 The @-Operator 5.6 Quantum Mechanics Viewed as a Complex Structure on a Classical Phase Space 5.6.1 Introduction 5.6.2 Varying the Vacuum 5.6.3 Kähler Manifolds as Classical Phase Spaces 5.6.4 Complex–Structure Deformations 5.6.5 Kähler Deformations 5.6.6 Dynamics on Kähler Spaces 5.6.7 Interpretations 5.7 Geometric Quantization 5.7.1 Quantization of Ordinary Hamiltonian Mechanics 5.7.2 Quantization of Relativistic Hamiltonian Mechanics 5.8 K-Theory and Complex Dynamics 5.8.1 Topological K-Theory 5.8.2 Algebraic K-Theory 5.8.3 Chern Classes and Chern Character 5.8.4 Atiyah’s View on K-Theory 5.8.5 Atiyah–Singer Index Theorem 5.8.6 The Infinite–Order Case 5.8.7 Twisted K-Theory and the Verlinde Algebra 5.8.8 Stringy and Brane Dynamics via K-Theory 5.9 Self–Similar Liouville Neurodynamics 6 Path Integrals and Complex Dynamics 6.1 Path Integrals: Sums Over
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,22 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiGRATIS per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-144245
Quantità: 1 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-167361
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. xviii + 810 1st Edition. Codice articolo 26299976
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. xviii + 810. Codice articolo 7547927
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. xviii + 810. Codice articolo 18299970
Quantità: 1 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Hardcover. Condizione: Like New. Like New. book. Codice articolo ERICA758140206411X5
Quantità: 1 disponibili