Gaining access to high-quality data is a vital necessity in knowledge-based decision making. But data in its raw form often contains sensitive information about individuals. Providing solutions to this problem, the methods and tools of privacy-preserving data publishing enable the publication of useful information while protecting data privacy. Introduction to Privacy-Preserving Data Publishing: Concepts and Techniques presents state-of-the-art information sharing and data integration methods that take into account privacy and data mining requirements.
The first part of the book discusses the fundamentals of the field. In the second part, the authors present anonymization methods for preserving information utility for specific data mining tasks. The third part examines the privacy issues, privacy models, and anonymization methods for realistic and challenging data publishing scenarios. While the first three parts focus on anonymizing relational data, the last part studies the privacy threats, privacy models, and anonymization methods for complex data, including transaction, trajectory, social network, and textual data.
This book not only explores privacy and information utility issues but also efficiency and scalability challenges. In many chapters, the authors highlight efficient and scalable methods and provide an analytical discussion to compare the strengths and weaknesses of different solutions.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Benjamin C. M. Fung is an assistant professor in the Concordia Institute for Information Systems Engineering at Concordia University in Montreal, Quebec. Dr. Fung is also a research scientist and the treasurer of the National Cyber-Forensics and Training Alliance Canada (NCFTA Canada).
Ke Wang is a professor in the School of Computing Science at Simon Fraser University in Burnaby, British Columbia.
Ada Wai-Chee Fu is an associate professor in the Department of Computer Science and Engineering at the Chinese University of Hong Kong.
Philip S. Yu is a professor in the Department of Computer Science and the Wexler Chair in Information and Technology at the University of Illinois at Chicago.
THE FUNDAMENTALS
Introduction
Data Collection and Data Publishing
What Is Privacy-Preserving Data Publishing?
Related Research Areas
Attack Models and Privacy Models
Record Linkage Model
Attribute Linkage Model
Table Linkage Model
Probabilistic Model
Modeling Adversary’s Background Knowledge
Anonymization Operations
Generalization and Suppression
Anatomization and Permutation
Random Perturbation
Information Metrics
General Purpose Metrics
Special Purpose Metrics
Trade-Off Metrics
Anonymization Algorithms
Algorithms for the Record Linkage Model
Algorithms for the Attribute Linkage Model
Algorithms for the Table Linkage Model
Algorithms for the Probabilistic Attack
Attacks on Anonymous Data
ANONYMIZATION FOR DATA MINING
Anonymization for Classification Analysis
Introduction
Anonymization Problems for Red Cross BTS
High-Dimensional Top-Down Specialization (HDTDS)
Workload-Aware Mondrian
Bottom-Up Generalization
Genetic Algorithm
Evaluation Methodology
Summary and Lesson Learned
Anonymization for Cluster Analysis
Introduction
Anonymization Framework for Cluster Analysis
Dimensionality Reduction-Based Transformation
Related Topics
Summary
EXTENDED DATA PUBLISHING SCENARIOS
Multiple Views Publishing
Introduction
Checking Violations of k-Anonymity on Multiple Views
Checking Violations with Marginals
Multi-Relational k-Anonymity
Multi-Level Perturbation
Summary
Anonymizing Sequential Releases with New Attributes
Introduction
Monotonicity of Privacy
Anonymization Algorithm for Sequential Releases
Extensions
Summary
Anonymizing Incrementally Updated Data Records
Introduction
Continuous Data Publishing
Dynamic Data Republishing
HD-Composition
Summary
Collaborative Anonymization for Vertically Partitioned Data
Introduction
Privacy-Preserving Data Mashup
Cryptographic Approach
Summary and Lesson Learned
Collaborative Anonymization for Horizontally Partitioned Data
Introduction
Privacy Model
Overview of the Solution
Discussion
ANONYMIZING COMPLEX DATA
Anonymizing Transaction Data
Introduction
Cohesion Approach
Band Matrix Method
km-Anonymization
Transactional k-Anonymity
Anonymizing Query Logs
Summary
Anonymizing Trajectory Data
Introduction
LKC-Privacy
(k, δ)-Anonymity
MOB k-Anonymity
Other Spatio-Temporal Anonymization Methods
Summary
Anonymizing Social Networks
Introduction
General Privacy-Preserving Strategies
Anonymization Methods for Social Networks
Data Sets
Summary
Sanitizing Textual Data
Introduction
ERASE
Health Information DE-identification (HIDE)
Summary
Other Privacy-Preserving Techniques and Future Trends
Interactive Query Model
Privacy Threats Caused by Data Mining Results
Privacy-Preserving Distributed Data Mining
Future Directions
References
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 18,86 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiEUR 18,27 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiDa: Devils in the Detail Ltd, Oxford, Regno Unito
Condizione: Very Good. Picture Shown is For Illustration Purposes Only, Please See Below For Further DetailsCONDITION ? VERY GOOD ? HARDBACK - light wear and scuff marks to boards, dent to corners/edges of boards, pages in nice condition, shipped from the UK. Codice articolo 383/PP/680H 489
Quantità: 1 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Hardcover. Condizione: New. Codice articolo 6666-TNFPD-9781420091489
Quantità: 5 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 6751972-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 6751972-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 6751972
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 6751972
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. New copy - Usually dispatched within 4 working days. 706. Codice articolo B9781420091489
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 376 This item is printed on demand. Codice articolo 8272024
Quantità: 3 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781420091489
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Benjamin C. M. Fung is an assistant professor in the Concordia Institute for Information Systems Engineering at Concordia University in Montreal, Quebec. Dr. Fung is also a research scientist and the treasurer of the National Cyber-Foren. Codice articolo 595755185
Quantità: Più di 20 disponibili