Articoli correlati a Introducing Monte Carlo Methods with R

Introducing Monte Carlo Methods with R - Brossura

 
9781441915757: Introducing Monte Carlo Methods with R

Sinossi

Computational techniques based on simulation have now become an essential part of the statistician's toolbox. It is thus crucial to provide statisticians with a practical understanding of those methods, and there is no better way to develop intuition and skills for simulation than to use simulation to solve statistical problems. Introducing Monte Carlo Methods with R covers the main tools used in statistical simulation from a programmer's point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison. While this book constitutes a comprehensive treatment of simulation methods, the theoretical justification of those methods has been considerably reduced, compared with Robert and Casella (2004). Similarly, the more exploratory and less stable solutions are not covered here.

This book does not require a preliminary exposure to the R programming language or to Monte Carlo methods, nor an advanced mathematical background. While many examples are set within a Bayesian framework, advanced expertise in Bayesian statistics is not required. The book covers basic random generation algorithms, Monte Carlo techniques for integration and optimization, convergence diagnoses, Markov chain Monte Carlo methods, including Metropolis {Hastings and Gibbs algorithms, and adaptive algorithms. All chapters include exercises and all R programs are available as an R package called mcsm. The book appeals to anyone with a practical interest in simulation methods but no previous exposure. It is meant to be useful for students and practitioners in areas such as statistics, signal processing, communications engineering, control theory, econometrics, finance and more. The programming parts are introduced progressively to be accessible to any reader.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Dalla quarta di copertina

<p>Computational techniques based on simulation have now become an essential part of the statistician's toolbox. It is thus crucial to provide statisticians with a practical understanding of those methods, and there is no better way to develop intuition and skills for simulation than to use simulation to solve statistical problems. <em>Introducing Monte Carlo Methods with R</em> covers the main tools used in statistical simulation from a programmer's point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison. While this book constitutes a comprehensive treatment of simulation methods, the theoretical justification of those methods has been considerably reduced, compared with Robert and Casella (2004). Similarly, the more exploratory and less stable solutions are not covered here.</p><p>This book does not require a preliminary exposure to the R programming language or to Monte Carlo methods, nor an advanced mathematical background. While many examples are set within a Bayesian framework, advanced expertise in Bayesian statistics is not required. The book covers basic random generation algorithms, Monte Carlo techniques for integration and optimization, convergence diagnoses, Markov chain Monte Carlo methods, including Metropolis {Hastings and Gibbs algorithms, and adaptive algorithms. All chapters include exercises and all R programs are available as an R package called mcsm. The book appeals to anyone with a practical interest in simulation methods but no previous exposure. It is meant to be useful for students and practitioners in areas such as statistics, signal processing, communications engineering, control theory, econometrics, finance and more. The programming parts are introduced progressively to be accessible to any reader.</p><p><strong>Christian P. Robert</strong> is Professor of Statistics at Université Paris Dauphine, and Head of the Statistics Laboratory of CREST, both in Paris, France. He has authored more than 150 papers in applied probability, Bayesian statistics and simulation methods. He is a fellow of the Institute of Mathematical Statistics and the recipient of an IMS Medallion. He has authored eight other books, including <em>The Bayesian Choice</em> which received the ISBA DeGroot Prize in 2004, Monte Carlo Statistical Methods with George Casella, and <em>Bayesian Core</em> with Jean-Michel Marin. He has served as Joint Editor of the <em>Journal of the Royal Statistical Society Series B</em>, as well as an associate editor for most major statistical journals, and was the 2008 ISBA President.</p><p><strong>George Casella</strong> is Distinguished Professor in the Department of Statistics at the University of Florida. He is active in both theoretical and applied statistics, is a fellow of the Institute of Mathematical Statistics and the American Statistical Association, and a Foreign Member of the Spanish Royal Academy of Sciences. He has served as Theory and Methods Editor of the <em>Journal of the American Statistical Association</em>, as Executive Editor of <em>Statistical Science</em>, and as Joint Editor of the <em>Journal of the Royal Statistical Society Series B</em><em>.</em> In addition to books with Christian Robert, he has written <em>Variance Components</em>, 1992, with S.R. Searle and C.E. McCulloch; <em>Statistical Inference</em>, Second Edition, 2001, with Roger Berger; and <em>Theory of Point Estimation</em>, Second Edition, 1998, with Erich Lehmann. His latest book is <em>Statistical Design</em> 2008.</p>

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: ottimo
xv 283 pages. Apart from minor...
Visualizza questo articolo

EUR 29,00 per la spedizione da Australia a Italia

Destinazione, tempi e costi

EUR 17,05 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781441915825: Introducing Monte Carlo Methods with R

Edizione in evidenza

ISBN 10:  1441915826 ISBN 13:  9781441915825
Brossura

Risultati della ricerca per Introducing Monte Carlo Methods with R

Foto dell'editore

Robert, Christian P and George Casella
Editore: Springer Etc, New York, 2010
ISBN 10: 1441915753 ISBN 13: 9781441915757
Antico o usato Soft cover

Da: Good Reading Secondhand Books, Benalla, VIC, Australia

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Soft cover. Condizione: Fine. xv 283 pages. Apart from minor shelf wear the book appears untouched. 'Computational techniques based on simulation have now become an essential part of the statistician's toolbox. It is thus crucial to provide statisticians with a practical understanding of those methods, and there is no better way to develop intuition and skills for simulation than to use simulation to solve statistical problems. Introducing Monte Carlo Methods with R covers the main tools used in statistical simulation from a programmer's point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison. While this book constitutes a comprehensive treatment of simulation methods, the theoretical justification of those methods has been considerably reduced, compared with Robert and Casella (2004). Similarly, the more exploratory and less stable solutions are not covered here. This book does not require a preliminary exposure to the R programming language or to Monte Carlo methods, nor an advanced mathematical background. While many examples are set within a Bayesian framework, advanced expertise in Bayesian statistics is not required. The book covers basic random generation algorithms, Monte Carlo techniques for integration and optimization, convergence diagnoses, Markov chain Monte Carlo methods, including Metropolis {Hastings and Gibbs algorithms, and adaptive algorithms. All chapters include exercises and all R programs are available as an R package called mcsm. The book appeals to anyone with a practical interest in simulation methods but no previous exposure. It is meant to be useful for students and practitioners in areas such as statistics, signal processing, communications engineering, control theory, econometrics, finance and more. The programming parts are introduced progressively to be accessible to any reader." (Publisher). Codice articolo 019453

Contatta il venditore

Compra usato

EUR 23,36
Convertire valuta
Spese di spedizione: EUR 29,00
Da: Australia a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Robert, Christian P.; Casella, George
Editore: Springer Verlag, 2009
ISBN 10: 1441915753 ISBN 13: 9781441915757
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 7725631-n

Contatta il venditore

Compra nuovo

EUR 51,77
Convertire valuta
Spese di spedizione: EUR 17,05
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Christian Robert|George Casella
Editore: Springer New York, 2009
ISBN 10: 1441915753 ISBN 13: 9781441915757
Nuovo Kartoniert / Broschiert
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The first book to present modern Monte Carlo and Markov Chain Monte Carlo (MCMC) methods from a practical perspective through a guided implementation in the R languageAll concepts are carefully described with the abstract theoretical background re. Codice articolo 4172317

Contatta il venditore

Compra nuovo

EUR 66,44
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Christian P. Robert
Editore: Springer, 2009
ISBN 10: 1441915753 ISBN 13: 9781441915757
Nuovo Brossura

Da: GoldBooks, Denver, CO, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: new. Codice articolo 76E69_94_1441915753

Contatta il venditore

Compra nuovo

EUR 50,41
Convertire valuta
Spese di spedizione: EUR 26,44
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Christian Robert
Editore: SPRINGER NATURE Dez 2009, 2009
ISBN 10: 1441915753 ISBN 13: 9781441915757
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Computational techniques based on simulation have now become an essential part of the statistician's toolbox. It is thus crucial to provide statisticians with a practical understanding of those methods, and there is no better way to develop intuition and skills for simulation than to use simulation to solve statistical problems. Introducing Monte Carlo Methods with R covers the main tools used in statistical simulation from a programmer's point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison. While this book constitutes a comprehensive treatment of simulation methods, the theoretical justification of those methods has been considerably reduced, compared with Robert and Casella (2004). Similarly, the more exploratory and less stable solutions are not covered here.This book does not require a preliminary exposure to the R programming language or to Monte Carlo methods, nor an advanced mathematical background. While many examples are set within a Bayesian framework, advanced expertise in Bayesian statistics is not required. The book covers basic random generation algorithms, Monte Carlo techniques for integration and optimization, convergence diagnoses, Markov chain Monte Carlo methods, including Metropolis {Hastings and Gibbs algorithms, and adaptive algorithms. All chapters include exercises and all R programs are available as an R package called mcsm. The book appeals to anyone with a practical interest in simulation methods but no previous exposure. It is meant to be useful for students and practitioners in areas such as statistics, signal processing, communications engineering, control theory, econometrics, finance and more. The programming parts are introduced progressively to be accessible to any reader. 284 pp. Englisch. Codice articolo 9781441915757

Contatta il venditore

Compra nuovo

EUR 74,89
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Christian P. Robert; George Casella
Editore: Springer Verlag, 2009
ISBN 10: 1441915753 ISBN 13: 9781441915757
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781441915757_new

Contatta il venditore

Compra nuovo

EUR 79,07
Convertire valuta
Spese di spedizione: EUR 10,39
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Christian P. Robert; George Casella
Editore: Springer Verlag, 2009
ISBN 10: 1441915753 ISBN 13: 9781441915757
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781441915757

Contatta il venditore

Compra nuovo

EUR 85,21
Convertire valuta
Spese di spedizione: EUR 7,68
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Christian P. Robert; George Casella
Editore: Springer Verlag, 2009
ISBN 10: 1441915753 ISBN 13: 9781441915757
Nuovo Brossura

Da: Best Price, Torrance, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. SUPER FAST SHIPPING. Codice articolo 9781441915757

Contatta il venditore

Compra nuovo

EUR 70,04
Convertire valuta
Spese di spedizione: EUR 25,57
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Christian Robert
Editore: Springer New York, 2009
ISBN 10: 1441915753 ISBN 13: 9781441915757
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Computational techniques based on simulation have now become an essential part of the statistician's toolbox. It is thus crucial to provide statisticians with a practical understanding of those methods, and there is no better way to develop intuition and skills for simulation than to use simulation to solve statistical problems. Introducing Monte Carlo Methods with R covers the main tools used in statistical simulation from a programmer's point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison. While this book constitutes a comprehensive treatment of simulation methods, the theoretical justification of those methods has been considerably reduced, compared with Robert and Casella (2004). Similarly, the more exploratory and less stable solutions are not covered here.This book does not require a preliminary exposure to the R programming language or to Monte Carlo methods, nor an advanced mathematical background. While many examples are set within a Bayesian framework, advanced expertise in Bayesian statistics is not required. The book covers basic random generation algorithms, Monte Carlo techniques for integration and optimization, convergence diagnoses, Markov chain Monte Carlo methods, including Metropolis {Hastings and Gibbs algorithms, and adaptive algorithms. All chapters include exercises and all R programs are available as an R package called mcsm. The book appeals to anyone with a practical interest in simulation methods but no previous exposure. It is meant to be useful for students and practitioners in areas such as statistics, signal processing, communications engineering, control theory, econometrics, finance and more. The programming parts are introduced progressively to be accessible to any reader. Codice articolo 9781441915757

Contatta il venditore

Compra nuovo

EUR 80,74
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Robert, Christian P.; Casella, George
Editore: Springer Verlag, 2009
ISBN 10: 1441915753 ISBN 13: 9781441915757
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 7725631-n

Contatta il venditore

Compra nuovo

EUR 78,48
Convertire valuta
Spese di spedizione: EUR 17,34
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 10 copie di questo libro

Vedi tutti i risultati per questo libro