An Introduction to Difference Equations - Brossura

Elaydi, Saber

 
9781441920010: An Introduction to Difference Equations

Sinossi

A must-read for mathematicians, scientists and engineers who want to understand difference equations and discrete dynamics

Contains the most complete and comprehenive analysis of the stability of one-dimensional maps or first order difference equations.

Has an extensive number of applications in a variety of fields from neural network to host-parasitoid systems.

Includes chapters on continued fractions, orthogonal polynomials and asymptotics.

Lucid and transparent writing style

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Dalla quarta di copertina

The book integrates both classical and modern treatments of difference equations. It contains the most updated and comprehensive material, yet the presentation is simple enough for the book to be used by advanced undergraduate and beginning graduate students. This third edition includes more proofs, more graphs, and more applications. The author has also updated the contents by adding a new chapter on Higher Order Scalar Difference Equations, along with recent results on local and global stability of one-dimensional maps, a new section on the various notions of asymptoticity of solutions, a detailed proof of Levin-May Theorem, and the latest results on the LPA flour-beetle model.

Saber Elaydi is Professor of Mathematics at Trinity University. He is also the author of Discrete Chaos (1999), and the Editor-In-Chief of the Journal of Difference Equations and Applications.

About the Second Edition:

The book is a valuable reference for anyone who models discrete systems. Dynamicists have the long-awaited discrete counterpart to standard textbooks such as Hirsch and Smale ('Differential Equations, Dynamical Systems, and Linear Algebra'). It is so well written and well designed, and the contents are so interesting to me, that I had a difficult time putting it down.

- Shandelle Henson, Journal of Difference Equations and Applications

Among the few introductory texts to difference equations this book is one of the very best ones. It has many features that the other texts don't have, e.g., stability theory, the Z-transform method (including a study of Volterra systems), and asymptotic behavior of solutions of difference equations (including Levinson's lemma) are studied extensively. It also contains very nice examples that primarily arise in applications in a variety of disciplines, including neural networks, feedback control, biology, Markov chains, economics, and heat transfer...

-Martin Bohner, University of Missouri, Rolla

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9780387230597: An Introduction To Difference Equations

Edizione in evidenza

ISBN 10:  0387230599 ISBN 13:  9780387230597
Casa editrice: Springer Nature, 2005
Rilegato