Articoli correlati a Algorithmic Learning in a Random World

Algorithmic Learning in a Random World - Brossura

 
9781441934710: Algorithmic Learning in a Random World

Sinossi

Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Dalla quarta di copertina

Conformal prediction is a valuable new method of machine learning. Conformal predictors are among the most accurate methods of machine learning, and unlike other state-of-the-art methods, they provide information about their own accuracy and reliability.

This new monograph integrates mathematical theory and revealing experimental work. It demonstrates mathematically the validity of the reliability claimed by conformal predictors when they are applied to independent and identically distributed data, and it confirms experimentally that the accuracy is sufficient for many practical problems. Later chapters generalize these results to models called repetitive structures, which originate in the algorithmic theory of randomness and statistical physics. The approach is flexible enough to incorporate most existing methods of machine learning, including newer methods such as boosting and support vector machines and older methods such as nearest neighbors and the bootstrap.

Topics and Features:

    * Describes how conformal predictors yield accurate and reliable predictions,    complemented with quantitative measures of their accuracy and reliability

    * Handles both classification and regression problems

    * Explains how to apply the new algorithms to real-world data sets

    * Demonstrates the infeasibility of some standard prediction tasks

    * Explains connections with Kolmogorov’s algorithmic randomness, recent work in machine learning, and older work in statistics

   * Develops new methods of probability forecasting and shows how to use them for prediction in causal networks

 

Researchers in computer science, statistics, and artificial intelligence will find the book an authoritative and rigorous treatment of some of the most promising new developments in machine learning. Practitioners and students in all areas of research that use quantitative prediction or machine learning will learn about important new methods.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: molto buono
Item in very good condition! Textbooks...
Visualizza questo articolo

EUR 30,06 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 11,55 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9780387001524: Algorithmic Learning in a Random World

Edizione in evidenza

ISBN 10:  0387001522 ISBN 13:  9780387001524
Casa editrice: Springer-Verlag New York Inc., 2005
Rilegato

Risultati della ricerca per Algorithmic Learning in a Random World

Foto dell'editore

Alex Gammerman
Editore: Springer US, 2004
ISBN 10: 1441934715 ISBN 13: 9781441934710
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 344 pages. 9.25x6.10x0.77 inches. In Stock. Codice articolo __1441934715

Contatta il venditore

Compra nuovo

EUR 207,39
Convertire valuta
Spese di spedizione: EUR 11,55
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Vovk, Vladimir, Gammerman, Alex, Shafer, Glenn
Editore: Springer, 2010
ISBN 10: 1441934715 ISBN 13: 9781441934710
Antico o usato Brossura

Da: SecondSale, Montgomery, IL, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00015581020

Contatta il venditore

Compra usato

EUR 222,31
Convertire valuta
Spese di spedizione: EUR 30,06
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Alex Gammerman
Editore: Springer US, 2004
ISBN 10: 1441934715 ISBN 13: 9781441934710
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 344 pages. 9.25x6.10x0.77 inches. In Stock. Codice articolo zk1441934715

Contatta il venditore

Compra nuovo

EUR 260,46
Convertire valuta
Spese di spedizione: EUR 11,55
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello