Onishchik, A. A. Kirillov, and E. B. Vinberg, who obtained their first results on Lie groups in Dynkin's seminar. At a later stage, the work of the seminar was greatly enriched by the active participation of 1. 1. Pyatetskii Shapiro. As already noted, Dynkin started to work in probability as far back as his undergraduate studies. In fact, his first published paper deals with a problem arising in Markov chain theory. The most significant among his earliest probabilistic results concern sufficient statistics. In [15] and [17], Dynkin described all families of one-dimensional probability distributions admitting non-trivial sufficient statistics. These papers have considerably influenced the subsequent research in this field. But Dynkin's most famous results in probability concern the theory of Markov processes. Following Kolmogorov, Feller, Doob and Ito, Dynkin opened a new chapter in the theory of Markov processes. He created the fundamental concept of a Markov process as a family of measures corresponding to var ious initial times and states and he defined time homogeneous processes in terms of the shift operators ()t. In a joint paper with his student A.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Process Level Large Deviations for a Class of Piecewise Homogeneous Random Walks.- Mutual Singularity of Genealogical Structures of Fleming-Viot and Continuous Branching Processes.- Regular Conditional Expectations and the Continuum Hypothesis.- Necessary and Sufficient Conditions for Weak Convergence of One-Dimensional Markov Processes.- Inverse Subordination of Excessive Functions.- Jumping Branching Measure-Valued Processes.- The Boundedness of Branching Markov Processes.- A Limit Theorem for Weighted Branching Process Trees.- Loop Condensation Effects in the Behavior of Random Walks.- On the Stability of Solutions of Stochastic Evolution Equations.- Harmonic Functions on Riemannian Manifolds: A Probabilistic Approach.- On a Problem Suggested by A.D. Wentzell.- Regularity Properties of a Supercritical Superprocess.- A Lemma on Super-Brownian Motion with Some Applications.- Sequential Screening of Significant Variables of an Additive Model.- Brownian Bandits.- Lyapunov Exponents and Distributions of Magnetic Fields in Dynamo Models.- The Strong Markov Property of the Support of Super-Brownian Motion.- Some Results on Random Walks on Groups.- Diffusions as Integral Curves, or Stratonovich without Itô.- Convex Solutions to Variational Inequalities and Multidimensional Singular Control.- Regularity of Self-Diffusion Coefficient.- Representation Results for Stopping Times in Jump-with-Drift Processes.
Book by None
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiQuantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Onishchik, A. A. Kirillov, and E. B. Vinberg, who obtained their first results on Lie groups in Dynkin's seminar. At a later stage, the work of the seminar was greatly enriched by the active participation of 1. 1. Pyatetskii Shapiro. As already noted, Dynkin started to work in probability as far back as his undergraduate studies. In fact, his first published paper deals with a problem arising in Markov chain theory. The most significant among his earliest probabilistic results concern sufficient statistics. In [15] and [17], Dynkin described all families of one-dimensional probability distributions admitting non-trivial sufficient statistics. These papers have considerably influenced the subsequent research in this field. But Dynkin's most famous results in probability concern the theory of Markov processes. Following Kolmogorov, Feller, Doob and Ito, Dynkin opened a new chapter in the theory of Markov processes. He created the fundamental concept of a Markov process as a family of measures corresponding to var ious initial times and states and he defined time homogeneous processes in terms of the shift operators ()t. In a joint paper with his student A. 452 pp. Englisch. Codice articolo 9781461266914
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Onishchik, A. A. Kirillov, and E. B. Vinberg, who obtained their first results on Lie groups in Dynkin's seminar. At a later stage, the work of the seminar was greatly enriched by the active participation of 1. 1. Pyatetskii Shapiro. As already noted, Dynkin started to work in probability as far back as his undergraduate studies. In fact, his first published paper deals with a problem arising in Markov chain theory. The most significant among his earliest probabilistic results concern sufficient statistics. In [15] and [17], Dynkin described all families of one-dimensional probability distributions admitting non-trivial sufficient statistics. These papers have considerably influenced the subsequent research in this field. But Dynkin's most famous results in probability concern the theory of Markov processes. Following Kolmogorov, Feller, Doob and Ito, Dynkin opened a new chapter in the theory of Markov processes. He created the fundamental concept of a Markov process as a family of measures corresponding to var ious initial times and states and he defined time homogeneous processes in terms of the shift operators ()t. In a joint paper with his student A.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 452 pp. Englisch. Codice articolo 9781461266914
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781461266914_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Onishchik, A. A. Kirillov, and E. B. Vinberg, who obtained their first results on Lie groups in Dynkin's seminar. At a later stage, the work of the seminar was greatly enriched by the active participation of 1. 1. Pyatetskii Shapiro. As already noted, Dynkin started to work in probability as far back as his undergraduate studies. In fact, his first published paper deals with a problem arising in Markov chain theory. The most significant among his earliest probabilistic results concern sufficient statistics. In [15] and [17], Dynkin described all families of one-dimensional probability distributions admitting non-trivial sufficient statistics. These papers have considerably influenced the subsequent research in this field. But Dynkin's most famous results in probability concern the theory of Markov processes. Following Kolmogorov, Feller, Doob and Ito, Dynkin opened a new chapter in the theory of Markov processes. He created the fundamental concept of a Markov process as a family of measures corresponding to var ious initial times and states and he defined time homogeneous processes in terms of the shift operators ()t. In a joint paper with his student A. Codice articolo 9781461266914
Quantità: 1 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 688. Codice articolo C9781461266914
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9781461266914
Quantità: 10 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2716030028182
Quantità: Più di 20 disponibili