Articoli correlati a Unsolved Problems in Geometry: Unsolved Problems in...

Unsolved Problems in Geometry: Unsolved Problems in Intuitive Mathematics: 2 - Brossura

 
9781461269625: Unsolved Problems in Geometry: Unsolved Problems in Intuitive Mathematics: 2

Sinossi

Mathematicians and non-mathematicians alike have long been fascinated by geometrical problems, particularly those that are intuitive in the sense of being easy to state, perhaps with the aid of a simple diagram. Each section in the book describes a problem or a group of related problems. Usually the problems are capable of generalization of variation in many directions. The book can be appreciated at many levels and is intended for everyone from amateurs to research mathematicians.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

Notation and Definitions.- Sets. 1 Geometrical transformations..- Length, Area, and volume..- A. Convexity.- Al. The equichordal point problem..- A2. Hammer’s x-ray problems..- A3. Concurrent normals..- A4. Billiard ball trajectories in convex regions..- A5. Illumination problems..- A6. The floating body problem..- A7. Division of convex bodies by lines or planes through a point..- A8. Sections through the centroid of a convex body..- A9. Sections of centro-symmetric convex bodies..- A10. What can you tell about a convex body from its shadows?.- A11. What can you tell About a convex body from its sections?.- A12. Overlapping convex bodies..- A13. Intersections of congruent surfaces..- A14. Rotating polyhedra..- A15. Inscribed and circumscribed centro-symmetric bodies..- A16. Inscribed affine copies of convex bodies..- A17. Isoperimetric inequalities and extremal problems..- A18. Volume against width..- A19. Extremal problems for elongated sets..- A20. Dido’s problem..- A21. Blaschke’s problem..- A22. Minimal bodies of constant width..- A23. Constrained is operimetric problems..- A24. Is a body Fairly round if all its sections are?.- A25. How far apart can various centers be?.- A26. Dividing up a piece of land by a short fence..- A27. Midpoints of diameters of sets of constant width..- A28. Largest convex hull of an arc of a given length..- A29. Roads on planets..- A30. The shortest curve cutting all the lines through a disk..- A31. Cones based on convex sets..- A32. Generalized ellipses..- A33. Conic sections through five points..- A34. The shape of worn stones..- A35. Geodesics..- A36. Convex sets with universal sections..- A37. Convex space-filling curves..- A38. m-convex sets..- B. Polygons, Polyhedra, and Polytopes.- Bl. Fitting one triangle inside another..- B2. Inscribing polygons in curves..- B3. Maximal regular polyhedra inscribed in regular polyhedra..- B4. Prince Rupert’s problem..- B5. Random polygons and polyhedra..- B6. Extremal problems for polygons..- B7. Longest chords of polygons..- B8. Isoperimetric inequalities for polyhedra..- B9. Inequalities for sums of edge lengths of polyhedra..- B10. Shadows of polyhedra..- B11. Dihedral angles of polyhedra..- B12. Monostatic polyhedra..- B13. Rigidity of polyhedra..- B14. Rigidity of frameworks..- B15. Counting polyhedra..- B16. The sizes of the faces of a polyhedron..- B17. Unimodality of f-vectors of polytopes..- B18. Inscribable and circumscribable polyhedra..- B19. Truncating polyhedra..- B20. Lengths of paths on polyhedra..- B21. Nets of polyhedra..- B22. Polyhedra with congruent faces..- B23. Ordering the faces of a polyhedron..- B24. The four color conjecture for toroidal polyhedra..- B25. Sequences of polygons and polyhedra..- C. Tiling and Dissection.- Cl. Conway’s fried potato problem..- C2. Squaring the square..- C3. Mrs. Perkins’s quilt..- C4. Decomposing a square or a cube into n smaller ones..- C5. Tiling with incomparable rectangles and cuboids..- C6. Cutting up squares, circles, and polygons..- C7. Dissecting a polygon into nearly equilateral triangles..- C8. Dissecting the sphere into small congruent pieces..- C9. The simplexity of the d-cube..- C10. Tiling the plane with squares..- C11. Tiling the plane with triangles..- C12. Rotational symmetries of tiles..- C13. Tilings with a constant number of neighbors..- C14. Which polygons tile the plane?.- C15. Isoperimetric problems for tilings..- C16. Polyominoes..- C17. Reptiles..- C18. Aperiodic tilings..- C19. Decomposing a sphere into circular arcs..- C20. Problems in equidecomposability..- D. Packing and Covering.- D1. Packing circles, or spreading points, in a square..- D2. Spreading points in a circle..- D3. Covering a circle with equal disks..- D4. Packing equal squares in a square..- D5. Packing unequal rectangles and squares in a square..- D6. The Rados’ problem on selecting disjoint squares..- D7. The problem of Tammes..- D8. Covering the sphere with circular caps..- D9. Variations on the penny-packing problem..- D10. Packing Balls in space..- D11. Packing and covering with congruent convex sets..- D12. Kissing numbers of convex sets..- D13. Variations on Bang’s plank theorem..- D14. Borsuk’s conjecture..- D15. Universal covers..- D16. Universal covers for several sets..- D17. Hadwiger’s covering conjecture..- D18. The worm problem..- E. Combinatorial Geometry.- El. Helly-type problems..- E2. Variations on Krasnosel’skii’s theorem..- E3. Common transversals..- E4. Variations on Radon’s theorem..- E5. Collections of disks with no three in a line..- E6. Moving disks around..- E7. Neighborly convex bodies..- E8. Separating objects..- E9. Lattice point problems..- E10. Sets covering constant numbers of lattice points..- Ell. Sets that can be moved to cover several lattice points..- E12. Sets that always cover several lattice points..- E13. Variations on Minkowski’s theorem..- E14. Positioning convex sets relative to discrete sets..- F. Finite Sets of Points.- F1. Minimum number of distinct distances..- F2. Repeated distances..- F3. Two-distance sets..- F4.Can each distance occur a different number of times?.- F5. Well-spaced sets of points..- F6. Isosceles triangles determined by a set of points..- F7. Areas of triangles determined by a set of points..- F8. Convex polygons determined by a set of points..- F9. Circles through point sets..- F10. Perpendicular Bisectors..- F11. Sets cut off by straight lines..- F12. Lines through sets of points..- F13. Angles determined by a set of points..- F14. Further problems in discrete geometry..- F15. The shortest path joining a set of points..- F16. Connecting points by arcs..- F17. Arranging points on a sphere..- G. General Geometric Problems.- G1. Magic numbers..- G2. Metrically homogeneous sets..- G3. Arcs with increasing chords..- G4. Maximal sets avoiding certain distance configurations..- G5. Moving furniture around..- G6. Questions related to the Kakeya problem..- G7. Measurable sets and lines..- G8. Determining curves from intersections with lines..- G9. Two sets which always intersect in a point..- G10. The chromatic number of the plane and of space..- G11. Geometric graphs..- G12. Euclidean Ramsey problems..- G13. Triangles with vertices in sets of a given area..- G14. Sets Containing large triangles..- G15. Similar copies of sequences..- G16. Unions of similar copies of sets..- Index of Authors Cited.- General Index.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer
  • Data di pubblicazione2013
  • ISBN 10 1461269628
  • ISBN 13 9781461269625
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero di pagine220
  • Contatto del produttorenon disponibile

Compra usato

Condizioni: come nuovo
Like New
Visualizza questo articolo

EUR 29,64 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9780387975061: Unsolved Problems in Geometry: Unsolved Problems in Intuitive Mathematics: 2

Edizione in evidenza

ISBN 10:  0387975063 ISBN 13:  9780387975061
Casa editrice: Springer Verlag, 1994
Rilegato

Risultati della ricerca per Unsolved Problems in Geometry: Unsolved Problems in...

Immagini fornite dal venditore

Hallard T. Croft|Kenneth Falconer|Richard K. Guy
Editore: Springer New York, 2013
ISBN 10: 1461269628 ISBN 13: 9781461269625
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Mathematicians and non-mathematicians alike have long been fascinated by geometrical problems, particularly those that are intuitive in the sense of being easy to state, perhaps with the aid of a simple diagram. Each section in the book describes a problem . Codice articolo 4189596

Contatta il venditore

Compra nuovo

EUR 118,61
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Croft, Hallard T. T.; Falconer, Kenneth; Guy, Richard K.
Editore: Springer, 2013
ISBN 10: 1461269628 ISBN 13: 9781461269625
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781461269625_new

Contatta il venditore

Compra nuovo

EUR 119,21
Convertire valuta
Spese di spedizione: EUR 10,66
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Croft, Hallard T.
Editore: Springer 2013-10, 2013
ISBN 10: 1461269628 ISBN 13: 9781461269625
Nuovo PF

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PF. Condizione: New. Codice articolo 6666-IUK-9781461269625

Contatta il venditore

Compra nuovo

EUR 111,78
Convertire valuta
Spese di spedizione: EUR 23,70
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Foto dell'editore

Hallard T. Croft
ISBN 10: 1461269628 ISBN 13: 9781461269625
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 343. Codice articolo C9781461269625

Contatta il venditore

Compra nuovo

EUR 138,53
Convertire valuta
Spese di spedizione: EUR 8,57
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Hallard T. Croft
ISBN 10: 1461269628 ISBN 13: 9781461269625
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Mathematicians and non-mathematicians alike have long been fascinated by geometrical problems, particularly those that are intuitive in the sense of being easy to state, perhaps with the aid of a simple diagram. Each section in the book describes a problem or a group of related problems. Usually the problems are capable of generalization of variation in many directions. The book can be appreciated at many levels and is intended for everyone from amateurs to research mathematicians. 220 pp. Englisch. Codice articolo 9781461269625

Contatta il venditore

Compra nuovo

EUR 139,09
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Hallard T. Croft
ISBN 10: 1461269628 ISBN 13: 9781461269625
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -Mathematicians and non-mathematicians alike have long been fascinated by geometrical problems, particularly those that are intuitive in the sense of being easy to state, perhaps with the aid of a simple diagram. Each section in the book describes a problem or a group of related problems. Usually the problems are capable of generalization of variation in many directions. The book can be appreciated at many levels and is intended for everyone from amateurs to research mathematicians.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 220 pp. Englisch. Codice articolo 9781461269625

Contatta il venditore

Compra nuovo

EUR 139,09
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Hallard T. Croft
ISBN 10: 1461269628 ISBN 13: 9781461269625
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Mathematicians and non-mathematicians alike have long been fascinated by geometrical problems, particularly those that are intuitive in the sense of being easy to state, perhaps with the aid of a simple diagram. Each section in the book describes a problem or a group of related problems. Usually the problems are capable of generalization of variation in many directions. The book can be appreciated at many levels and is intended for everyone from amateurs to research mathematicians. Codice articolo 9781461269625

Contatta il venditore

Compra nuovo

EUR 145,40
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Croft, Hallard T. T.; Falconer, Kenneth; Guy, Richard K.
Editore: Springer, 2013
ISBN 10: 1461269628 ISBN 13: 9781461269625
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar2716030028425

Contatta il venditore

Compra nuovo

EUR 132,27
Convertire valuta
Spese di spedizione: EUR 65,48
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Hallard T. Croft Richard K. Guy Kenneth J. Falconer
Editore: Springer, 2013
ISBN 10: 1461269628 ISBN 13: 9781461269625
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 220. Codice articolo 2697511909

Contatta il venditore

Compra nuovo

EUR 197,14
Convertire valuta
Spese di spedizione: EUR 7,86
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Croft, Hallard T./ Falconer, Kenneth J./ Guy, Richard K.
Editore: Springer Verlag, 2013
ISBN 10: 1461269628 ISBN 13: 9781461269625
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 214 pages. 9.25x6.10x0.50 inches. In Stock. Codice articolo x-1461269628

Contatta il venditore

Compra nuovo

EUR 193,91
Convertire valuta
Spese di spedizione: EUR 11,86
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 3 copie di questo libro

Vedi tutti i risultati per questo libro