Artificial Neural Networks have captured the interest of many researchers in the last five years. As with many young fields, neural network research has been largely empirical in nature, relyingstrongly on simulationstudies ofvarious network models. Empiricism is, of course, essential to any science for it provides a body of observations allowing initial characterization of the field. Eventually, however, any maturing field must begin the process of validating empirically derived conjectures with rigorous mathematical models. It is in this way that science has always pro ceeded. It is in this way that science provides conclusions that can be used across a variety of applications. This monograph by Michael Lemmon provides just such a theoretical exploration of the role ofcompetition in Artificial Neural Networks. There is "good news" and "bad news" associated with theoretical research in neural networks. The bad news isthat such work usually requires the understanding of and bringing together of results from many seemingly disparate disciplines such as neurobiology, cognitive psychology, theory of differential equations, largc scale systems theory, computer science, and electrical engineering. The good news is that for those capable of making this synthesis, the rewards are rich as exemplified in this monograph.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 Introduction.- 2 The CINN Equations.- 3 The CINN Algorithm.- 4 The Continuum Model.- 5 CINN Learning.- 6 Parameter Estimation.- 7 Summary.- A Dynamic System Concepts.- B Proofs of Lemmas.- C The Method of Characteristics.- D Simulation Results.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2716030033344
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781461368090_new
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9781461368090
Quantità: 10 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Artificial Neural Networks have captured the interest of many researchers in the last five years. As with many young fields, neural network research has been largely empirical in nature, relyingstrongly on simulationstudies ofvarious network models. Empiric. Codice articolo 4194972
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 160. Codice articolo 2697851917
Quantità: 4 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Artificial Neural Networks have captured the interest of many researchers in the last five years. As with many young fields, neural network research has been largely empirical in nature, relyingstrongly on simulationstudies ofvarious network models. Empiricism is, of course, essential to any science for it provides a body of observations allowing initial characterization of the field. Eventually, however, any maturing field must begin the process of validating empirically derived conjectures with rigorous mathematical models. It is in this way that science has always pro ceeded. It is in this way that science provides conclusions that can be used across a variety of applications. This monograph by Michael Lemmon provides just such a theoretical exploration of the role ofcompetition in Artificial Neural Networks. There is 'good news' and 'bad news' associated with theoretical research in neural networks. The bad news isthat such work usually requires the understanding of and bringing together of results from many seemingly disparate disciplines such as neurobiology, cognitive psychology, theory of differential equations, largc scale systems theory, computer science, and electrical engineering. The good news is that for those capable of making this synthesis, the rewards are rich as exemplified in this monograph. 160 pp. Englisch. Codice articolo 9781461368090
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 160 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 94545362
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 160. Codice articolo 1897851911
Quantità: 4 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Competitively Inhibited Neural Networks for Adaptive Parameter Estimation | Michael Lemmon | Taschenbuch | xiii | Englisch | 2012 | Springer | EAN 9781461368090 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Codice articolo 105720913
Quantità: 5 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Artificial Neural Networks have captured the interest of many researchers in the last five years. As with many young fields, neural network research has been largely empirical in nature, relyingstrongly on simulationstudies ofvarious network models. Empiricism is, of course, essential to any science for it provides a body of observations allowing initial characterization of the field. Eventually, however, any maturing field must begin the process of validating empirically derived conjectures with rigorous mathematical models. It is in this way that science has always pro ceeded. It is in this way that science provides conclusions that can be used across a variety of applications. This monograph by Michael Lemmon provides just such a theoretical exploration of the role ofcompetition in Artificial Neural Networks. There is 'good news' and 'bad news' associated with theoretical research in neural networks. The bad news isthat such work usually requires the understanding of and bringing together of results from many seemingly disparate disciplines such as neurobiology, cognitive psychology, theory of differential equations, largc scale systems theory, computer science, and electrical engineering. The good news is that for those capable of making this synthesis, the rewards are rich as exemplified in this monograph.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 160 pp. Englisch. Codice articolo 9781461368090
Quantità: 1 disponibili