Articoli correlati a Elements of Algebra

Euler, L. Elements of Algebra ISBN 13: 9781461385134

Elements of Algebra - Brossura

 
9781461385134: Elements of Algebra

Sinossi

I. Containing the Analysis of Determinate Quantities.- Section I. Of the Different Methods of calculating Simple Quantities.- Chap. I. Of Mathematics in general.- II. Explanation of the signs + plus and - minus.- III. Of the Multiplication of Simple Quantities.- IV. Of the Nature of whole Numbers, or Integers, with respect to their Factors.- V. Of the Division of Simple Quantities.- VI. Of the Properties of Integers, with respect to their Divisors.- VII. Of Fractions in general.- VIII. Of the Properties of Fractions.- IX. Of the Addition and Subtraction of Fractions.- X. Of the Multiplication and Division of Fractions.- XI. Of Square Numbers.- XII. Of Square Roots, and of Irrational Numbers resulting from them.- XIII. Of Impossible, or Imaginary Quantities, which arise from the same source.- XIV. Of Cubic Numbers.- XV. Of Cube Roots, and of Irrational Numbers resulting from them.- XVI. Of Powers in general.- XVII. Of the Calculation of Powers.- XVIII. Of Roots, with relation to Powers in general.- XIX. Of the Method of representing Irrational Numbers by Fractional Exponents.- XX. Of the different Methods of Calculation, and of their Mutual Connexion.- XXI. Of Logarithms in general.- XXII. Of the Logarithmic Tables now in use.- XXIII. Of the Method of expressing Logarithms.- Section II. Of the different Methods of calculating Compound Quantities.- Chap. 1. Of the Addition of Compound Quantities.- II. Of the Subtraction of Compound Quantities.- III. Of the Multiplication of Compound Quantities.- IV. Of the Division of Compound Quantities.- V. Of the Resolution of Fractions into Infinite Series.- VI. Of the Squares of Compound Quantities.- Chap. VII. Of the Extraction of Roots applied to Compound Quantities.- VIII. Of the Calculation of Irrational Quantities.- IX. Of Cubes, and of the Extraction of Cube Roots.- X. Of the higher Powers of Compound Quantities.- XI. Of the Transposition of the Letters, on which the demonstration of the preceding Rule is founded.- XII. Of the Expression of Irrational Powers by Infinite Series.- XIII. Of the Resolution of Negative Powers.- Section III. Of Ratios and Proportions.- Chap. I. Of Arithmetical Ratio, or of the Difference between two Numbers.- II. Of Arithmetical Proportion.- III. Of Arithmetical Progressions.- IV. Of the Summation of Arithmetical Progressions.- V. Of Figurate, or Polygonal Numbers.- VI. Of Geometrical Ratio.- VII. Of the greatest Common Divisor of two given Numbers.- VIII. Of Geometrical Proportions.- IX. Observations on the Rules of Proportion and their Utility.- X. Of Compound Relations.- XI. Of Geometrical Progressions.- XII. Of Infinite Decimal Fractions.- XIII. Of the Calculation of Interest.- Section IV. Of Algebraic Equations, and of the Resolution of those Equations.- Chap. I Of the Solution of Problems in General.- II. Of the Resolution of Simple Equations, or Equations of the First Degree.- III. Of the Solution of Questions relating to the preceding Chapter.- IV. Of the Resolution of two or more Equations of the First Degree.- V. Of the Resolution of Pure Quadratic Equations.- VI. Of the Resolution of Mixed Equations of the Second Degree.- VII. Of the Extraction of the Roots of Polygonal Numbers.- VIII. Of the Extraction of Square Roots of Binomials.- Chap. IX. Of the Nature of Equations of the Second Degree.- X. Of Pure Equations of the Third Degree.- XI. Of the Resolution of Complete Equations of the Third Degree.- XII. Of the Rule of Cardan, or of Scipio Ferreo.- XIII. Of the Resolution of Equations of the Fourth Degree.- XIV. Of the Rule of Bombelli for reducing the Resolution of Equations of the Fourth Degree to that of Equations of the Third Degree.- XV. Of a new Method of resolving Equations of the Fourth Degree.- XVI. Of the Resolution of Equations by Approximation.- II. Containing the Analysis of Indeterminate Quantities.- Chap. I. Of the Resolution of Equations of the first Degree, which contain more than one unknown Quantity.- II. Of the Rule which is c

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Recensione

"This is a facsimile reprint of John Hewlett's 1840 translation of Euler's Algebra and Lagrange's Additions thereto. Most of Euler's contribution is elementary, nothing more advanced than solving quartic equations, but worth having in order to appreciate his leisurely and effective style---would that more great mathematicians wrote so well and to such pedagogic effect. However, one third of the book is his lucid treatment of questions in number theory, and it is this material that drew Lagrange's comments. Here for the first time are the rigorous treatments of continued fractions and "Pell's" equation, and of quadratic forms. The combination of Euler's and Lagrange's tests, of experimental and theoretical research in Weil's description, is justly celebrated by the editors of Euler's Opera omnia, who print the two together, and it is good to see this classic back in print in English. Every library without much Euler should at least have this volume. It is accompanied by an excerpt of Horner's memoir on the life of Euler, and a eulogy by Truesdell, with a useful bibliography." -- MATHEMATICAL REVIEWS

Contenuti

I. Containing the Analysis of Determinate Quantities.- Section I. Of the Different Methods of calculating Simple Quantities.- Chap. I. Of Mathematics in general.- II. Explanation of the signs + plus and — minus.- III. Of the Multiplication of Simple Quantities.- IV. Of the Nature of whole Numbers, or Integers, with respect to their Factors.- V. Of the Division of Simple Quantities.- VI. Of the Properties of Integers, with respect to their Divisors.- VII. Of Fractions in general.- VIII. Of the Properties of Fractions.- IX. Of the Addition and Subtraction of Fractions.- X. Of the Multiplication and Division of Fractions.- XI. Of Square Numbers.- XII. Of Square Roots, and of Irrational Numbers resulting from them.- XIII. Of Impossible, or Imaginary Quantities, which arise from the same source.- XIV. Of Cubic Numbers.- XV. Of Cube Roots, and of Irrational Numbers resulting from them.- XVI. Of Powers in general.- XVII. Of the Calculation of Powers.- XVIII. Of Roots, with relation to Powers in general.- XIX. Of the Method of representing Irrational Numbers by Fractional Exponents.- XX. Of the different Methods of Calculation, and of their Mutual Connexion.- XXI. Of Logarithms in general.- XXII. Of the Logarithmic Tables now in use.- XXIII. Of the Method of expressing Logarithms.- Section II. Of the different Methods of calculating Compound Quantities.- Chap. 1. Of the Addition of Compound Quantities.- II. Of the Subtraction of Compound Quantities.- III. Of the Multiplication of Compound Quantities.- IV. Of the Division of Compound Quantities.- V. Of the Resolution of Fractions into Infinite Series.- VI. Of the Squares of Compound Quantities.- Chap. VII. Of the Extraction of Roots applied to Compound Quantities.- VIII. Of the Calculation of Irrational Quantities.- IX. Of Cubes, and of the Extraction of Cube Roots.- X. Of the higher Powers of Compound Quantities.- XI. Of the Transposition of the Letters, on which the demonstration of the preceding Rule is founded.- XII. Of the Expression of Irrational Powers by Infinite Series.- XIII. Of the Resolution of Negative Powers.- Section III. Of Ratios and Proportions.- Chap. I. Of Arithmetical Ratio, or of the Difference between two Numbers.- II. Of Arithmetical Proportion.- III. Of Arithmetical Progressions.- IV. Of the Summation of Arithmetical Progressions.- V. Of Figurate, or Polygonal Numbers.- VI. Of Geometrical Ratio.- VII. Of the greatest Common Divisor of two given Numbers.- VIII. Of Geometrical Proportions.- IX. Observations on the Rules of Proportion and their Utility.- X. Of Compound Relations.- XI. Of Geometrical Progressions.- XII. Of Infinite Decimal Fractions.- XIII. Of the Calculation of Interest.- Section IV. Of Algebraic Equations, and of the Resolution of those Equations.- Chap. I Of the Solution of Problems in General.- II. Of the Resolution of Simple Equations, or Equations of the First Degree.- III. Of the Solution of Questions relating to the preceding Chapter.- IV. Of the Resolution of two or more Equations of the First Degree.- V. Of the Resolution of Pure Quadratic Equations.- VI. Of the Resolution of Mixed Equations of the Second Degree.- VII. Of the Extraction of the Roots of Polygonal Numbers.- VIII. Of the Extraction of Square Roots of Binomials.- Chap. IX. Of the Nature of Equations of the Second Degree.- X. Of Pure Equations of the Third Degree.- XI. Of the Resolution of Complete Equations of the Third Degree.- XII. Of the Rule of Cardan, or of Scipio Ferreo.- XIII. Of the Resolution of Equations of the Fourth Degree.- XIV. Of the Rule of Bombelli for reducing the Resolution of Equations of the Fourth Degree to that of Equations of the Third Degree.- XV. Of a new Method of resolving Equations of the Fourth Degree.- XVI. Of the Resolution of Equations by Approximation.- II. Containing the Analysis of Indeterminate Quantities.- Chap. I. Of the Resolution of Equations of the first Degree, which contain more than one unknown Quantity.- II. Of the Rule which is called Regula Cæci, for determining by means of two Equations, three or more Unknown Quantities.- III. Of Compound Indeterminate Equations, in which one of the unknown Quantities does not exceed the first Degree.- IV. Of the Method of rendering Surd Quantities of the form, ?(a + bx + cx2), Rational.- V. Of the Cases in which the Formula, a + bx + cx2, can never become a Square.- VI. Of the Cases in Integer Numbers, in which the Formula ax2 + b becomes a Square.- VII. Of a particular Method, by which the Formula, an2 + 1, becomes a Square in Integers.- VIII. Of the Method of rendering the Irrational Formula,?(a + bx + cx2 + dx3), Rational.- IX. Of the Method of rendering rational the Incommensurable Formula, ?(a + bx + cx2 + dx3 + ex4).- X. Of the Method of rendering rational the irrational Formula, $$ \sqrt[3]{{\left( {a + bx + c{x^{2}} + d{x^{3}}} \right)}} $$.- XI. Of the Resolution of the Formula, ax2 + bxy + cy2, into its Factors.- XII. Of the Transformation of the Formula, ax2 + cy2, into Squares, and higher Powers.- XIII. Of some Expressions of the Form, ax4 + by4, which are not reducible to Squares.- XIV. Solution of some Questions that belong to this Part of Algebra.- Chap. XV. Solutions of some Questions in which Cubes are required.- Additions.- Chap. I. Of Continued Fractions.- II. Solution of some Curious and New Arithmetical Problems.- III. Of the Resolution in Integer Numbers of Equations of the first Degree containing two unknown Quantities.- IV. General Method for resolving in Integer Equations of two unknown Quantities, one of which does not exceed the first Degree.- V. A direct and general Method for finding the values of z, that will render Quantities of the form, ?(a + bx + cx2), rational, and for resolving, in rational Numbers, the indeterminate Equations of the second Degree, which have two unknown Quantities, when they admit of Solutions of this kind.- Resolution of the Equation, Ap2 + Bq2 = z2, in Integer Numbers.- VI. Of Double and Triple Equalities.- VII. A direct and general Method for finding all the values of y expressed in Liteger Numbers, by which we may render Quantities of the form, ?(Ay2 + B), rational; A and B being given Integer Numbers; and also for finding all the possible Solutions, in Integer Numbers, of Indeterminate Quadratic Equations of two unknown Quantities.- Resolution of the Equation, cy2 ? 2nyz + Bz2=1, in Integer Numbers.- First Method.- Second Method.- Of the Manner of finding all the possible Solutions of the Equation, cy2 ? 2nyz + Bz2=1, when we know only one of them.- Of the Manner of finding all the possible Solutions, in whole numbers, of Indeterminate Quadratic Equations of two unknown Quantities.- VIII. Remarks on Equations of the Form, p2=Aq2 + 1, and on the common Method of resolving them in whole Numbers.- IX. Of the Manner of finding Algebraic Functions of all Degrees, which, when multiplied together, may always produce similar Functions.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Like New
Visualizza questo articolo

EUR 28,80 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9780387960142: Elements of Algebra

Edizione in evidenza

ISBN 10:  0387960147 ISBN 13:  9780387960142
Casa editrice: Springer Verlag, 1984
Rilegato

Risultati della ricerca per Elements of Algebra

Immagini fornite dal venditore

L. Euler
Editore: Springer New York, 2011
ISBN 10: 146138513X ISBN 13: 9781461385134
Nuovo Brossura

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 4196301

Contatta il venditore

Compra nuovo

EUR 74,71
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

L. Euler
ISBN 10: 146138513X ISBN 13: 9781461385134
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -I. Containing the Analysis of Determinate Quantities.- Section I. Of the Different Methods of calculating Simple Quantities.- Chap. I. Of Mathematics in general.- II. Explanation of the signs + plus and ¿ minus.- III. Of the Multiplication of Simple Quantities.- IV. Of the Nature of whole Numbers, or Integers, with respect to their Factors.- V. Of the Division of Simple Quantities.- VI. Of the Properties of Integers, with respect to their Divisors.- VII. Of Fractions in general.- VIII. Of the Properties of Fractions.- IX. Of the Addition and Subtraction of Fractions.- X. Of the Multiplication and Division of Fractions.- XI. Of Square Numbers.- XII. Of Square Roots, and of Irrational Numbers resulting from them.- XIII. Of Impossible, or Imaginary Quantities, which arise from the same source.- XIV. Of Cubic Numbers.- XV. Of Cube Roots, and of Irrational Numbers resulting from them.- XVI. Of Powers in general.- XVII. Of the Calculation of Powers.- XVIII. Of Roots, with relation to Powers in general.- XIX. Of the Method of representing Irrational Numbers by Fractional Exponents.- XX. Of the different Methods of Calculation, and of their Mutual Connexion.- XXI. Of Logarithms in general.- XXII. Of the Logarithmic Tables now in use.- XXIII. Of the Method of expressing Logarithms.- Section II. Of the different Methods of calculating Compound Quantities.- Chap. 1. Of the Addition of Compound Quantities.- II. Of the Subtraction of Compound Quantities.- III. Of the Multiplication of Compound Quantities.- IV. Of the Division of Compound Quantities.- V. Of the Resolution of Fractions into Infinite Series.- VI. Of the Squares of Compound Quantities.- Chap. VII. Of the Extraction of Roots applied to Compound Quantities.- VIII. Of the Calculation of Irrational Quantities.- IX. Of Cubes, and of the Extraction of Cube Roots.- X. Of the higher Powers of Compound Quantities.- XI. Of the Transposition of the Letters, on which the demonstration of the preceding Rule is founded.- XII. Of the Expression of Irrational Powers by Infinite Series.- XIII. Of the Resolution of Negative Powers.- Section III. Of Ratios and Proportions.- Chap. I. Of Arithmetical Ratio, or of the Difference between two Numbers.- II. Of Arithmetical Proportion.- III. Of Arithmetical Progressions.- IV. Of the Summation of Arithmetical Progressions.- V. Of Figurate, or Polygonal Numbers.- VI. Of Geometrical Ratio.- VII. Of the greatest Common Divisor of two given Numbers.- VIII. Of Geometrical Proportions.- IX. Observations on the Rules of Proportion and their Utility.- X. Of Compound Relations.- XI. Of Geometrical Progressions.- XII. Of Infinite Decimal Fractions.- XIII. Of the Calculation of Interest.- Section IV. Of Algebraic Equations, and of the Resolution of those Equations.- Chap. I Of the Solution of Problems in General.- II. Of the Resolution of Simple Equations, or Equations of the First Degree.- III. Of the Solution of Questions relating to the preceding Chapter.- IV. Of the Resolution of two or more Equations of the First Degree.- V. Of the Resolution of Pure Quadratic Equations.- VI. Of the Resolution of Mixed Equations of the Second Degree.- VII. Of the Extraction of the Roots of Polygonal Numbers.- VIII. Of the Extraction of Square Roots of Binomials.- Chap. IX. Of the Nature of Equations of the Second Degree.- X. Of Pure Equations of the Third Degree.- XI. Of the Resolution of Complete Equations of the Third Degree.- XII. Of the Rule of Cardan, or of Scipio Ferreo.- XIII. Of the Resolution of Equations of the Fourth Degree.- XIV. Of the Rule of Bombelli for reducing the Resolution of Equations of the Fourth Degree to that of Equations of the Third Degree.- XV. Of a new Method of resolving Equations of the Fourth Degree.- XVI. Of the Resolution of Equations by Approximation.- II. Containing the Analysis of Indeterminate Quantities.- Chap. I. Of the Resolution of Equations of the first Degree, which contain more than one unknown Quantity.- II. Of the Rule which is called Regula C¿, for determining by means of two Equations, three or more Unknown Quantities.- III. Of Compound Indeterminate Equations, in which one of the unknown Quantities does not exceed the first Degree.- IV. Of the Method of rendering Surd Quantities of the form, (a + bx + cx2), Rational.- V. Of the Cases in which the Formula, a + bx + cx2, can never become a Square.- VI. Of the Cases in Integer Numbers, in which the Formula ax2 + b becomes a Square.- VII. Of a particular Method, by which the Formula, an2 + 1, becomes a Square in Integers.- VIII. Of the Method of rendering the Irrational Formula, (a + bx + cx2 + dx3), Rational.- IX. Of the Method of rendering rational the Incommensurable Formula, (a + bx + cx2 + dx3 + ex4).- X. Of the Method of rendering rational the irrational Formula, $$ sqrt[3]{{left( {a + bx + c{x^{2}} + d{x^{3}}}ight)}} $$.- XI. Of the Resolution of the Formula, ax2 + bxy + cy2, into its Factors.- XII. Of the Transformation of the Formula, ax2 + cy2, into Squares, and higher Powers.- XIII. Of some Expressions of the Form, ax4 + by4, which are not reducible to Squares.- XIV. Solution of some Questions that belong to this Part of Algebra.- Chap. XV. Solutions of some Questions in which Cubes are required.- Additions.- Chap. I. Of Continued Fractions.- II. Solution of some Curious and New Arithmetical Problems.- III. Of the Resolution in Integer Numbers of Equations of the first Degree containing two unknown Quantities.- IV. General Method for resolving in Integer Equations of two unknown Quantities, one of which does not exceed the first Degree.- V. A direct and general Method for finding the values of z, that will render Quantities of the form, (a + bx + cx2), rational, and for resolving, in rational Numbers, the indeterminate Equations of the second Degree, which have two unknown Quantities, when they admit of Solutions of this kind.- Resolution of the Equation, Ap2 + B. Codice articolo 9781461385134

Contatta il venditore

Compra nuovo

EUR 85,59
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

L. Euler
ISBN 10: 146138513X ISBN 13: 9781461385134
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -I. Containing the Analysis of Determinate Quantities.- Section I. Of the Different Methods of calculating Simple Quantities.- Chap. I. Of Mathematics in general.- II. Explanation of the signs + plus and ¿ minus.- III. Of the Multiplication of Simple Quantities.- IV. Of the Nature of whole Numbers, or Integers, with respect to their Factors.- V. Of the Division of Simple Quantities.- VI. Of the Properties of Integers, with respect to their Divisors.- VII. Of Fractions in general.- VIII. Of the Properties of Fractions.- IX. Of the Addition and Subtraction of Fractions.- X. Of the Multiplication and Division of Fractions.- XI. Of Square Numbers.- XII. Of Square Roots, and of Irrational Numbers resulting from them.- XIII. Of Impossible, or Imaginary Quantities, which arise from the same source.- XIV. Of Cubic Numbers.- XV. Of Cube Roots, and of Irrational Numbers resulting from them.- XVI. Of Powers in general.- XVII. Of the Calculation of Powers.- XVIII. Of Roots, with relation to Powers in general.- XIX. Of the Method of representing Irrational Numbers by Fractional Exponents.- XX. Of the different Methods of Calculation, and of their Mutual Connexion.- XXI. Of Logarithms in general.- XXII. Of the Logarithmic Tables now in use.- XXIII. Of the Method of expressing Logarithms.- Section II. Of the different Methods of calculating Compound Quantities.- Chap. 1. Of the Addition of Compound Quantities.- II. Of the Subtraction of Compound Quantities.- III. Of the Multiplication of Compound Quantities.- IV. Of the Division of Compound Quantities.- V. Of the Resolution of Fractions into Infinite Series.- VI. Of the Squares of Compound Quantities.- Chap. VII. Of the Extraction of Roots applied to Compound Quantities.- VIII. Of the Calculation of Irrational Quantities.- IX. Of Cubes, and of the Extraction of Cube Roots.- X. Of the higher Powers of Compound Quantities.- XI. Of the Transposition of the Letters, on which the demonstration of the preceding Rule is founded.- XII. Of the Expression of Irrational Powers by Infinite Series.- XIII. Of the Resolution of Negative Powers.- Section III. Of Ratios and Proportions.- Chap. I. Of Arithmetical Ratio, or of the Difference between two Numbers.- II. Of Arithmetical Proportion.- III. Of Arithmetical Progressions.- IV. Of the Summation of Arithmetical Progressions.- V. Of Figurate, or Polygonal Numbers.- VI. Of Geometrical Ratio.- VII. Of the greatest Common Divisor of two given Numbers.- VIII. Of Geometrical Proportions.- IX. Observations on the Rules of Proportion and their Utility.- X. Of Compound Relations.- XI. Of Geometrical Progressions.- XII. Of Infinite Decimal Fractions.- XIII. Of the Calculation of Interest.- Section IV. Of Algebraic Equations, and of the Resolution of those Equations.- Chap. I Of the Solution of Problems in General.- II. Of the Resolution of Simple Equations, or Equations of the First Degree.- III. Of the Solution of Questions relating to the preceding Chapter.- IV. Of the Resolution of two or more Equations of the First Degree.- V. Of the Resolution of Pure Quadratic Equations.- VI. Of the Resolution of Mixed Equations of the Second Degree.- VII. Of the Extraction of the Roots of Polygonal Numbers.- VIII. Of the Extraction of Square Roots of Binomials.- Chap. IX. Of the Nature of Equations of the Second Degree.- X. Of Pure Equations of the Third Degree.- XI. Of the Resolution of Complete Equations of the Third Degree.- XII. Of the Rule of Cardan, or of Scipio Ferreo.- XIII. Of the Resolution of Equations of the Fourth Degree.- XIV. Of the Rule of Bombelli for reducing the Resolution of Equations of the Fourth Degree to that of Equations of the Third Degree.- XV. Of a new Method of resolving Equations of the Fourth Degree.- XVI. Of the Resolution of Equations by Approximation.- II. Containing the Analysis of Indeterminate Quantities.- Chap. I. Of the Resolution of Equations of the first Degree, which contain more than one unknown Quantity.- II. Of the Rule which is called Regula C¿, for determining by means of two Equations, three or more Unknown Quantities.- III. Of Compound Indeterminate Equations, in which one of the unknown Quantities does not exceed the first Degree.- IV. Of the Method of rendering Surd Quantities of the form, (a + bx + cx2), Rational.- V. Of the Cases in which the Formula, a + bx + cx2, can never become a Square.- VI. Of the Cases in Integer Numbers, in which the Formula ax2 + b becomes a Square.- VII. Of a particular Method, by which the Formula, an2 + 1, becomes a Square in Integers.- VIII. Of the Method of rendering the Irrational Formula, (a + bx + cx2 + dx3), Rational.- IX. Of the Method of rendering rational the Incommensurable Formula, (a + bx + cx2 + dx3 + ex4).- X. Of the Method of rendering rational the irrational Formula, $$ sqrt[3]{{left( {a + bx + c{x^{2}} + d{x^{3}}}ight)}} $$.- XI. Of the Resolution of the Formula, ax2 + bxy + cy2, into its Factors.- XII. Of the Transformation of the Formula, ax2 + cy2, into Squares, and higher Powers.- XIII. Of some Expressions of the Form, ax4 + by4, which are not reducible to Squares.- XIV. Solution of some Questions that belong to this Part of Algebra.- Chap. XV. Solutions of some Questions in which Cubes are required.- Additions.- Chap. I. Of Continued Fractions.- II. Solution of some Curious and New Arithmetical Problems.- III. Of the Resolution in Integer Numbers of Equations of the first Degree containing two unknown Quantities.- IV. General Method for resolving in Integer Equations of two unknown Quantities, one of which does not exceed the first Degree.- V. A direct and general Method for finding the values of z, that will render Quantities of the form, (a + bx + cx2), rational, and for resolving, in rational Numbers, the indeterminate Equations of the second Degree, which have two unknown Quantities, when they admit of Solutions of this kind.- Resolution of the Equation, Ap2 + Bq2 =. Codice articolo 9781461385134

Contatta il venditore

Compra nuovo

EUR 85,59
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Euler, L.
Editore: Springer, 2011
ISBN 10: 146138513X ISBN 13: 9781461385134
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781461385134_new

Contatta il venditore

Compra nuovo

EUR 91,13
Convertire valuta
Spese di spedizione: EUR 10,36
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

L. Euler
Editore: Springer New York, 2011
ISBN 10: 146138513X ISBN 13: 9781461385134
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - I. Containing the Analysis of Determinate Quantities.- Section I. Of the Different Methods of calculating Simple Quantities.- Chap. I. Of Mathematics in general.- II. Explanation of the signs + plus and ¿ minus.- III. Of the Multiplication of Simple Quantities.- IV. Of the Nature of whole Numbers, or Integers, with respect to their Factors.- V. Of the Division of Simple Quantities.- VI. Of the Properties of Integers, with respect to their Divisors.- VII. Of Fractions in general.- VIII. Of the Properties of Fractions.- IX. Of the Addition and Subtraction of Fractions.- X. Of the Multiplication and Division of Fractions.- XI. Of Square Numbers.- XII. Of Square Roots, and of Irrational Numbers resulting from them.- XIII. Of Impossible, or Imaginary Quantities, which arise from the same source.- XIV. Of Cubic Numbers.- XV. Of Cube Roots, and of Irrational Numbers resulting from them.- XVI. Of Powers in general.- XVII. Of the Calculation of Powers.- XVIII. Of Roots, with relation to Powers in general.- XIX. Of the Method of representing Irrational Numbers by Fractional Exponents.- XX. Of the different Methods of Calculation, and of their Mutual Connexion.- XXI. Of Logarithms in general.- XXII. Of the Logarithmic Tables now in use.- XXIII. Of the Method of expressing Logarithms.- Section II. Of the different Methods of calculating Compound Quantities.- Chap. 1. Of the Addition of Compound Quantities.- II. Of the Subtraction of Compound Quantities.- III. Of the Multiplication of Compound Quantities.- IV. Of the Division of Compound Quantities.- V. Of the Resolution of Fractions into Infinite Series.- VI. Of the Squares of Compound Quantities.- Chap. VII. Of the Extraction of Roots applied to Compound Quantities.- VIII. Of the Calculation of Irrational Quantities.- IX. Of Cubes, and of the Extraction of Cube Roots.- X. Of the higher Powers of Compound Quantities.- XI. Of the Transposition of the Letters, on which the demonstration of the preceding Rule is founded.- XII. Of the Expression of Irrational Powers by Infinite Series.- XIII. Of the Resolution of Negative Powers.- Section III. Of Ratios and Proportions.- Chap. I. Of Arithmetical Ratio, or of the Difference between two Numbers.- II. Of Arithmetical Proportion.- III. Of Arithmetical Progressions.- IV. Of the Summation of Arithmetical Progressions.- V. Of Figurate, or Polygonal Numbers.- VI. Of Geometrical Ratio.- VII. Of the greatest Common Divisor of two given Numbers.- VIII. Of Geometrical Proportions.- IX. Observations on the Rules of Proportion and their Utility.- X. Of Compound Relations.- XI. Of Geometrical Progressions.- XII. Of Infinite Decimal Fractions.- XIII. Of the Calculation of Interest.- Section IV. Of Algebraic Equations, and of the Resolution of those Equations.- Chap. I Of the Solution of Problems in General.- II. Of the Resolution of Simple Equations, or Equations of the First Degree.- III. Of the Solution of Questions relating to the preceding Chapter.- IV. Of the Resolution of two or more Equations of the First Degree.- V. Of the Resolution of Pure Quadratic Equations.- VI. Of the Resolution of Mixed Equations of the Second Degree.- VII. Of the Extraction of the Roots of Polygonal Numbers.- VIII. Of the Extraction of Square Roots of Binomials.- Chap. IX. Of the Nature of Equations of the Second Degree.- X. Of Pure Equations of the Third Degree.- XI. Of the Resolution of Complete Equations of the Third Degree.- XII. Of the Rule of Cardan, or of Scipio Ferreo.- XIII. Of the Resolution of Equations of the Fourth Degree.- XIV. Of the Rule of Bombelli for reducing the Resolution of Equations of the Fourth Degree to that of Equations of the Third Degree.- XV. Of a new Method of resolving Equations of the Fourth Degree.- XVI. Of the Resolution of Equations by Approximation.- II. Containing the Analysis of Indeterminate Quantities.- Chap. I. Of the Resolution of Equations of the first Degree, which contain more than one unknown Quantity.- II. Of the Rule which is called Regula C¿, for determining by means of two Equations, three or more Unknown Quantities.- III. Of Compound Indeterminate Equations, in which one of the unknown Quantities does not exceed the first Degree.- IV. Of the Method of rendering Surd Quantities of the form, (a + bx + cx2), Rational.- V. Of the Cases in which the Formula, a + bx + cx2, can never become a Square.- VI. Of the Cases in Integer Numbers, in which the Formula ax2 + b becomes a Square.- VII. Of a particular Method, by which the Formula, an2 + 1, becomes a Square in Integers.- VIII. Of the Method of rendering the Irrational Formula, (a + bx + cx2 + dx3), Rational.- IX. Of the Method of rendering rational the Incommensurable Formula, (a + bx + cx2 + dx3 + ex4).- X. Of the Method of rendering rational the irrational Formula, $$ sqrt[3]{{left( {a + bx + c{x^{2}} + d{x^{3}}}ight)}} $$.- XI. Of the Resolution of the Formula, ax2 + bxy + cy2, into its Factors.- XII. Of the Transformation of the Formula, ax2 + cy2, into Squares, and higher Powers.- XIII. Of some Expressions of the Form, ax4 + by4, which are not reducible to Squares.- XIV. Solution of some Questions that belong to this Part of Algebra.- Chap. XV. Solutions of some Questions in which Cubes are required.- Additions.- Chap. I. Of Continued Fractions.- II. Solution of some Curious and New Arithmetical Problems.- III. Of the Resolution in Integer Numbers of Equations of the first Degree containing two unknown Quantities.- IV. General Method for resolving in Integer Equations of two unknown Quantities, one of which does not exceed the first Degree.- V. A direct and general Method for finding the values of z, that will render Quantities of the form, (a + bx + cx2), rational, and for resolving, in rational Numbers, the indeterminate Equations of the second Degree, which have two unknown Quantities, when they admit of Solutions of this kind.- Resolution of the Equation, Ap2 + Bq2 = z2, in Inte. Codice articolo 9781461385134

Contatta il venditore

Compra nuovo

EUR 92,26
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Truesdell, C.
Editore: Springer 2011-11, 2011
ISBN 10: 146138513X ISBN 13: 9781461385134
Nuovo PF

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

PF. Condizione: New. Codice articolo 6666-IUK-9781461385134

Contatta il venditore

Compra nuovo

EUR 85,02
Convertire valuta
Spese di spedizione: EUR 23,03
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Foto dell'editore

Leonard Euler
ISBN 10: 146138513X ISBN 13: 9781461385134
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 943. Codice articolo C9781461385134

Contatta il venditore

Compra nuovo

EUR 104,92
Convertire valuta
Spese di spedizione: EUR 13,86
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

L. Euler J. Hewlett
Editore: Springer, 2011
ISBN 10: 146138513X ISBN 13: 9781461385134
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 662. Codice articolo 2697848624

Contatta il venditore

Compra nuovo

EUR 124,21
Convertire valuta
Spese di spedizione: EUR 7,67
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Euler L. Hewlett J.
Editore: Springer, 2011
ISBN 10: 146138513X ISBN 13: 9781461385134
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand pp. 662 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 94548719

Contatta il venditore

Compra nuovo

EUR 129,31
Convertire valuta
Spese di spedizione: EUR 10,19
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

L. Euler
Editore: Springer, 2011
ISBN 10: 146138513X ISBN 13: 9781461385134
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 593 pages. 8.00x5.00x2.00 inches. In Stock. Codice articolo x-146138513X

Contatta il venditore

Compra nuovo

EUR 130,01
Convertire valuta
Spese di spedizione: EUR 11,52
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 5 copie di questo libro

Vedi tutti i risultati per questo libro