?This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems.
An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology.
Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods. ?
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods.
?This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems.
An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology.
Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 3,41 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 48,99 per la spedizione da Germania a U.S.A.
Destinazione, tempi e costiDa: Books From California, Simi Valley, CA, U.S.A.
hardcover. Condizione: Fine. Codice articolo mon0003845706
Quantità: 1 disponibili
Da: BooksRun, Philadelphia, PA, U.S.A.
Hardcover. Condizione: Fair. 2013. The item might be beaten up but readable. May contain markings or highlighting, as well as stains, bent corners, or any other major defect, but the text is not obscured in any way. Codice articolo 1461448174-7-1
Quantità: 1 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Hardcover. Condizione: Like New. Like New. book. Codice articolo ERICA77314614481746
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Valuable text for graduate students and reference for researchersContains R code throughout the text and in sample problems Includes unique page references to equation displaysDennis Boos and Len Stefanski are professors in the Depa. Codice articolo 4198548
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware - This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems.An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology.Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods. 588 pp. Englisch. Codice articolo 9781461448174
Quantità: 2 disponibili
Da: UK BOOKS STORE, London, LONDO, Regno Unito
Condizione: Brand New. Brand New! Fast Delivery This is an International Edition and ship within 24-48 hours. Deliver by FedEx and Dhl, & Aramex, UPS, & USPS and we do accept APO and PO BOX Addresses. Order can be delivered worldwide within 7-11 days and we do have flat rate for up to 2LB. Extra shipping charges will be requested if the Book weight is more than 5 LB. This Item May be shipped from India, United states & United Kingdom. Depending on your location and availability. Codice articolo CBS 9781461448174
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -¿This book is for students and researchers who have had a first year graduate level mathematicalstatistics course. It covers classical likelihood, Bayesian, and permutation inference;an introduction to basic asymptotic distribution theory; and modern topics like M-estimation,the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large numberof examples and problems.An important goal has been to make the topics accessible to a wide audience, with little overt relianceon measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimationand testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology.Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State.Their research has been eclectic, often with a robustness angle, although Stefanski is also known forresearch concentrated on measurement error, including a co-authored book on non-linear measurementerror models. In recent years the authors have jointly worked on variable selection methods.¿Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 588 pp. Englisch. Codice articolo 9781461448174
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 588. Codice articolo 2651417269
Quantità: 4 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems.An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology.Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods. Codice articolo 9781461448174
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 588 34 Illus. Codice articolo 57093994
Quantità: 4 disponibili