Principles of Verifiable RTL Design: A Functional Coding Style Supporting Verification Processes in Verilog explains how you can write Verilog to describe chip designs at the RT-level in a manner that cooperates with verification processes. This cooperation can return an order of magnitude improvement in performance and capacity from tools such as simulation and equivalence checkers. It reduces the labor costs of coverage and formal model checking by facilitating communication between the design engineer and the verification engineer. It also orients the RTL style to provide more useful results from the overall verification process.
The intended audience for Principles of Verifiable RTL Design: A Functional Coding Style Supporting Verification Processes in Verilog is engineers and students who need an introduction to various design verification processes and a supporting functional Verilog RTL coding style. A second intended audience is engineers who have been through introductory training in Verilog and now want to develop good RTL writing practices for verification. A third audience is Verilog language instructors who are using a general text on Verilog as the course textbook but want to enrich their lectures with an emphasis on verification. A fourth audience is engineers with substantial Verilog experience who want to improve their Verilog practice to work better with RTL Verilog verification tools. A fifth audience is design consultants searching for proven verification-centric methodologies. A sixth audience is EDA verification tool implementers who want some suggestions about a minimal Verilog verification subset.
Principles of Verifiable RTL Design: A Functional Coding Style Supporting Verification Processes in Verilog is based on the reality that comes from actual large-scale product design process and tool experience.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Preface. 1. Introduction. 2. The Verification Process. 3. RTL Methodology Basics. 4. RTL Logic Simulation. 5. RTL Formal Verification. 6. Verifiable RTL Style. 7. The Bad Stuff. 8. Verifiable RTL Tutorial. 9. Principles of Verifiable RTL Design. Bibliography. A Comparing Verilog Construct Performance. B Quick Reference. Index.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,92 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 11,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Principles of Verifiable RTL Design: A Functional Coding Style Supporting Verification Processes in Verilog explains how you can write Verilog to describe chip designs at the RT-level in a manner that cooperates with verification processes. This cooperation can return an order of magnitude improvement in performance and capacity from tools such as simulation and equivalence checkers. It reduces the labor costs of coverage and formal model checking by facilitating communication between the design engineer and the verification engineer. It also orients the RTL style to provide more useful results from the overall verification process. The intended audience for Principles of Verifiable RTL Design: A Functional Coding Style Supporting Verification Processes in Verilog is engineers and students who need an introduction to various design verification processes and a supporting functional Verilog RTL coding style. A second intended audience is engineers who have been through introductory training in Verilog and now want to develop good RTL writing practices for verification. A third audience is Verilog language instructors who are using a general text on Verilog as the course textbook but want to enrich their lectures with an emphasis on verification. A fourth audience is engineers with substantial Verilog experience who want to improve their Verilog practice to work better with RTL Verilog verification tools. A fifth audience is design consultants searching for proven verification-centric methodologies. A sixth audience is EDA verification tool implementers who want some suggestions about a minimal Verilog verification subset. Principles of Verifiable RTL Design: A Functional Coding Style Supporting Verification Processes in Verilog is based on the reality that comes from actual large-scale product design process and tool experience. 272 pp. Englisch. Codice articolo 9781475773132
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Principles of Verifiable RTL Design: A Functional Coding Style Supporting Verification Processes in Verilog explains how you can write Verilog to describe chip designs at the RT-level in a manner that cooperates with verification proces. Codice articolo 4207778
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Principles of Verifiable RTL Design: A Functional Coding Style Supporting Verification Processes in Verilog explains how you can write Verilog to describe chip designs at the RT-level in a manner that cooperates with verification processes. This cooperation can return an order of magnitude improvement in performance and capacity from tools such as simulation and equivalence checkers. It reduces the labor costs of coverage and formal model checking by facilitating communication between the design engineer and the verification engineer. It also orients the RTL style to provide more useful results from the overall verification process.The intended audience for Principles of Verifiable RTL Design: A Functional Coding Style Supporting Verification Processes in Verilog is engineers and students who need an introduction to various design verification processes and a supporting functional Verilog RTL coding style. A second intended audience is engineers who have been through introductory training in Verilog and now want to develop good RTL writing practices for verification. A third audience is Verilog language instructors who are using a general text on Verilog as the course textbook but want to enrich their lectures with an emphasis on verification. A fourth audience is engineers with substantial Verilog experience who want to improve their Verilog practice to work better with RTL Verilog verification tools. A fifth audience is design consultants searching for proven verification-centric methodologies. A sixth audience is EDA verification tool implementers who want some suggestions about a minimal Verilog verification subset.Principles of Verifiable RTL Design: A Functional Coding Style Supporting Verification Processes in Verilog is based on the reality that comes from actual large-scale product design process and tool experience.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 272 pp. Englisch. Codice articolo 9781475773132
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Principles of Verifiable RTL Design: A Functional Coding Style Supporting Verification Processes in Verilog explains how you can write Verilog to describe chip designs at the RT-level in a manner that cooperates with verification processes. This cooperation can return an order of magnitude improvement in performance and capacity from tools such as simulation and equivalence checkers. It reduces the labor costs of coverage and formal model checking by facilitating communication between the design engineer and the verification engineer. It also orients the RTL style to provide more useful results from the overall verification process. The intended audience for Principles of Verifiable RTL Design: A Functional Coding Style Supporting Verification Processes in Verilog is engineers and students who need an introduction to various design verification processes and a supporting functional Verilog RTL coding style. A second intended audience is engineers who have been through introductory training in Verilog and now want to develop good RTL writing practices for verification. A third audience is Verilog language instructors who are using a general text on Verilog as the course textbook but want to enrich their lectures with an emphasis on verification. A fourth audience is engineers with substantial Verilog experience who want to improve their Verilog practice to work better with RTL Verilog verification tools. A fifth audience is design consultants searching for proven verification-centric methodologies. A sixth audience is EDA verification tool implementers who want some suggestions about a minimal Verilog verification subset. Principles of Verifiable RTL Design: A Functional Coding Style Supporting Verification Processes in Verilog is based on the reality that comes from actual large-scale product design process and tool experience. Codice articolo 9781475773132
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781475773132_new
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 416. Codice articolo C9781475773132
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 272. Codice articolo 2697859704
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 272 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 94537639
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 272. Codice articolo 1897859698
Quantità: 4 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2716030093964
Quantità: Più di 20 disponibili