In the early 1990s, the establishment of the Internet brought forth a revolutionary viewpoint of information storage, distribution, and processing: the World Wide Web is becoming an enormous and expanding distributed digital library. Along with the development of the Web, image indexing and retrieval have grown into research areas sharing a vision of intelligent agents. Far beyond Web searching, image indexing and retrieval can potentially be applied to many other areas, including biomedicine, space science, biometric identification, digital libraries, the military, education, commerce, culture and entertainment.
Machine Learning and Statistical Modeling Approaches to Image Retrieval describes several approaches of integrating machine learning and statistical modeling into an image retrieval and indexing system that demonstrates promising results. The topics of this book reflect authors' experiences of machine learning and statistical modeling based image indexing and retrieval. This book contains detailed references for further reading and research in this field as well.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Preface Acknowledgments 1: Introduction 1. Text-Based Image Retrieval 2. Content-Based Image Retrieval 3. Automatic Linguistic Indexing of Images 4. Applications of Image Indexing and Retrieval 4.1 Web-Related Applications 4.2 Biomedical Applications 4.3 Space Science 4.4 Other Applications 5. Contributions of the Book 5.1 A Robust Image Similarity Measure 5.2 Clustering-Based Retrieval 5.3 Learning and Reasoning with Regions 5.4 Automatic Linguistic Indexing 5.5 Modeling Ancient Paintings 6.The Structure of the Book 2: Image Retrieval And Linguistic Indexing 1. Introduction 2. Content-Based Image Retrieval 2.1 Similarity Comparison 2.2 Semantic Gap 3. Categorization and Linguistic Indexing 4. Summary 3: Machine Learning And Statistical Modeling 1. Introduction 2. Spectral Graph Clustering 3. VC Theory and Support Vector Machines 3.1 VC Theory 3.2 Support Vector Machines 4. Additive Fuzzy Systems 5. Support Vector Learning for Fuzzy Rule-Based Classification Systems 5.1 Additive Fuzzy Rule-Based Classification Systems 5.2 Positive Definite Fuzzy Classifiers 5.3 An SVM Approach to Build Positive Definite Fuzzy Classifiers 6. 2-D Multi-Resolution Hidden Markov Models 7. Summary 4: A Robust Region-Based Similarity Measure 1. Introduction 2. Image Segmentation and Representation 2.1 Image Segmentation 2.2 Fuzzy Feature Representation of an Image 2.3 An Algorithmic View 3. Unified Feature Matching 3.1 Similarity Between Regions 3.2 Fuzzy Feature Matching 3.3 The UFM Measure 3.4 An Algorithmic View 4. An Algorithmic Summarization of the System 5. Experiments 5.1 Query Examples 5.2 Systematic Evaluation 5.2.1 Experiment Setup 5.2.2 Performance on Retrieval Accuracy 5.2.3 Robustness to Segmentation Uncertainties 5.3 Speed 5.4 Comparison of Membership Functions 6. Summary 5: Cluster-Based Retrieval By Unsupervised Learning 1. Introduction 2. Retrieval of Similarity Induced Image Clusters 2.1 System Overview 2.2 Neighboring Target Images Selection 2.3 Spectral Graph Partitioning 2.4 Finding a Representative Image for a Cluster 3. An Algorithmic View 3.1 Outline of Algorithm 3.2 Organization of Clusters 3.3 Computational Complexity 3.4 Parameters Selection 4. A Content-Based Image Clusters Retrieval System 5. Experiments 5.1 Query Examples 5.2 Systematic Evaluation 5.2.1 Measuring the Quality of Image Clustering 5.2.2 Retrieval Accuracy 5.3 Speed 5.4 Application of CLUE to Web Image Retrieval 6. Summary 6: Categorization By Learning And Reasoning With Regions 1. Introduction 2. Learning Region Prototypes Using Diverse Density 2.1 Diverse Density 2.2 Learning Region Prototypes 2.3 An Algorithmic View 3. Categorization by Reasoning with Region Prototypes 3.1 A Rule-Based Image Classifier 3.2 Support Vector Machine Concept Learning 3.3 An Algorithmic View 4. Experiments 4.1 Experiment Setup 4.2 Categorization Results 4.3 Sensitivity to Image Segmentation 4.4 Sensitivity to the Number of Categories 4.5 Sensitivity to the Size and Diversity of Training Set 4.6 Speed 5. Summary 7: Automatic Linguistic Indexing Of Pictures 1. Introduction 2. System Architecture 2.1 Feature Extraction 2.2 Multiresolution Statistical Modeling 2.3 Statistical Linguistic Indexing 2.4 Major Advantages 3. Model-Based Learning of Concepts 4. Automatic Linguistic Indexing of Pictures 5. Experiments 5.1 Training Concepts 5.2 Performance with a Controlled Database 5.3 Categorization and Annotation Results 6. Summary 8: Modeling Ancient Paintings 1. Introduction 2. Mixture of 2-D Multi-Resolution Hidden Markov Models 3. Feature Extraction 4. Syste
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,58 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiEUR 3,55 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2716030094144
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the early 1990s, the establishment of the Internet brought forth a revolutionary viewpoint of information storage, distribution, and processing: the World Wide Web is becoming an enormous and expanding distributed digital library. Along with the development of the Web, image indexing and retrieval have grown into research areas sharing a vision of intelligent agents. Far beyond Web searching, image indexing and retrieval can potentially be applied to many other areas, including biomedicine, space science, biometric identification, digital libraries, the military, education, commerce, culture and entertainment. Machine Learning and Statistical Modeling Approaches to Image Retrieval describes several approaches of integrating machine learning and statistical modeling into an image retrieval and indexing system that demonstrates promising results. The topics of this book reflect authors' experiences of machine learning and statistical modeling based image indexing and retrieval. This book contains detailed references for further reading and research in this field as well. 204 pp. Englisch. Codice articolo 9781475779301
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781475779301_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - In the early 1990s, the establishment of the Internet brought forth a revolutionary viewpoint of information storage, distribution, and processing: the World Wide Web is becoming an enormous and expanding distributed digital library. Along with the development of the Web, image indexing and retrieval have grown into research areas sharing a vision of intelligent agents. Far beyond Web searching, image indexing and retrieval can potentially be applied to many other areas, including biomedicine, space science, biometric identification, digital libraries, the military, education, commerce, culture and entertainment. Machine Learning and Statistical Modeling Approaches to Image Retrieval describes several approaches of integrating machine learning and statistical modeling into an image retrieval and indexing system that demonstrates promising results. The topics of this book reflect authors' experiences of machine learning and statistical modeling based image indexing and retrieval. This book contains detailed references for further reading and research in this field as well. Codice articolo 9781475779301
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In the early 1990s, the establishment of the Internet brought forth a revolutionary viewpoint of information storage, distribution, and processing: the World Wide Web is becoming an enormous and expanding distributed digital library. Along with the developm. Codice articolo 4207977
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 321. Codice articolo C9781475779301
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. reprint edition. 199 pages. 9.26x6.11x0.46 inches. In Stock. Codice articolo x-1475779305
Quantità: 2 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA77314757793056
Quantità: 1 disponibili