Functional Data Structures in R: Advanced Statistical Programming in R - Brossura

Mailund, Thomas

 
9781484231432: Functional Data Structures in R: Advanced Statistical Programming in R

Sinossi

Get an introduction to functional data structures using R and write more effective code and gain performance for your programs. This book teaches you workarounds because data in functional languages is not mutable: for example you’ll learn how to change variable-value bindings by modifying environments, which can be exploited to emulate pointers and implement traditional data structures. You’ll also see how, by abandoning traditional data structures, you can manipulate structures by building new versions rather than modifying them. You’ll discover how these so-called functional data structures are different from the traditional data structures you might know, but are worth understanding to do serious algorithmic programming in a functional language such as R.

By the end of Functional Data Structures in R, you’ll understand the choices to make in order to most effectively work with data structures when you cannot modify the data itself. These techniques are especially applicable for algorithmic development important in big data, finance, and other data science applications.

What You'll Learn
  • Carry out algorithmic programming in R
  • Use abstract data structures
  • Work with both immutable and persistent data
  • Emulate pointers and implement traditional data structures in R
  • Build new versions of traditional data structures that are known

Who This Book Is For

Experienced or advanced programmers with at least a comfort level with R. Some experience with data structures recommended.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Thomas Mailund is an associate professor in bioinformatics at Aarhus University, Denmark. He has a background in math and computer science. For the last decade, his main focus has been on genetics and evolutionary studies, particularly comparative genomics, speciation, and gene flow between emerging species. He has published Beginning Data Science in R, Functional Programming in R and Metaprogramming in R with Apress as well as other books.

Dalla quarta di copertina

Get an introduction to functional data structures using R and write more effective code and gain performance for your programs. This book teaches you workarounds because data in functional languages is not mutable: for example you ll learn how to change variable-value bindings by modifying environments, which can be exploited to emulate pointers and implement traditional data structures. You ll also see how, by abandoning traditional data structures, you can manipulate structures by building new versions rather than modifying them. You ll discover how these so-called functional data structures are different from the traditional data structures you might know, but are worth understanding to do serious algorithmic programming in a functional language such as R.

By the end of Functional Data Structures in R, you ll understand the choices to make in order to most effectively work with data structures when you cannot modify the data itself. These techniques are especially applicable for algorithmic development important in big data, finance, and other data science applications.

You will:
  • Carry out algorithmic programming in R
  • Use abstract data structures
  • Work with both immutable and persistent data
  • Emulate pointers and implement traditional data structures in R
  • Implement data structures in C/C++ with some wrapper code in R
  • Build new versions of traditional data structures that are known

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9781484256794: FUNCTIONAL DATA STRUCTURES IN R: ADVANCED STATISTICAL PROGRAMMING IN R

Edizione in evidenza

ISBN 10:  1484256794 ISBN 13:  9781484256794
Casa editrice: Apress, 2019
Brossura